Genetic Characterization and Variability Analysis of Chickpea (Cicer arietinum) Elite Germplasm under Different Cropping Conditions Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.9734/ijecc/2023/v13i123743
In current study 113 diverse genotypes of chickpea has been evaluated during rabi 2019-20 and 2020-21 under timely sown (TS), late sown (LS) and very late sown (VLS) cropping environment in augmented block design at research farm of ICAR-IIPR, Kanpur for genetic characterization to access the presence of variability among the major grain yield attributing traits under changing cropping conditions. Variation due to block were insignificant and error variance was significant for all three different trials (ie., TS, LS and VLS) conducted during rabi 2019-20 and 2020-21(Table 5) In the present study highest genotypic and phenotypic coefficient of variation was observed for UFP, SYP (g), PB, Y (kg/ha), PY (g), HI (%), BMP (g), HSW (g) and FP (Table 5) While the traits viz., DFI, DFF, DPI, DFP, DMI, DM and PHT (cm), BY (g) and NSP exhibited the moderate to low range of GVC and PCV value under TS, LS and VLS cropping conditions During rabi 2019-20 and 2020-21. Highest value of heritability (%) >60% have been observe for the traits DFI, DFF, DMI, DM, PB, Y (kg/ha), HSW (g), SYP (g), BMP (g) and FP in all three different cropping environments (Table 6 in the current study correlation coefficient analysis have been estimated for the Correlation values (Table 6) for all three different trials viz Timely sown (TS), Late sown (LS) and Very Late sown (VLS) conducted in Rabi 2019-20 and 2020-2021. The Pearson correlation coefficients of pooled data were calculated for Eighteen morphological traits The major yield contributing traits such as DFF, PHT (cm), PB, SYP (g), PY (g), Y (g), HSW (g), BY (g) and HI (%) have significantly correlated with all the traits except UFP and NSP (Table 6) The PY (g) exhibited strong positive correlation with Y (Kg/ha) (0.857** and 0.964**); HSW (g) (0.544* and 0.412*); BY (g) (517* and 0.856**); SYP (g) (0.628**and 0.506*); BMP (g) (0.553* and 0.494*); HI (%) (0.459* and 0.706**). Similarly, another chief yield contributing traits like SPY (g) is also positively correlated BMP (g) (0.536* and 0.682**); HI (%) (0.678** and 0.779**); FP (0.774** and 0.964**) and NSP (0.456* and 0.503*) except UFP (Table 7 maximum percentage of variance for all 113 diverse chickpea genotypes has been recorded for PC1(26.83, 26.63 & 31.46 in 2019-20; 29.87, 35.15 & 30.2 in 2020-21) and PC2 (24.19, 22.81 & 12.66 in 2019-20; 18.96, 15.43 & 17.4 in 2020-21) for all three separate trials i.e., TS, LS and VLS (Table 7).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.9734/ijecc/2023/v13i123743
- https://journalijecc.com/index.php/IJECC/article/download/3743/7372
- OA Status
- diamond
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390405884
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390405884Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.9734/ijecc/2023/v13i123743Digital Object Identifier
- Title
-
Genetic Characterization and Variability Analysis of Chickpea (Cicer arietinum) Elite Germplasm under Different Cropping ConditionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-23Full publication date if available
- Authors
-
Nagmi Praween, R. S. Sikarwar, Yogesh Kumar, Partha Basu, Biswajit Mondal, G. P. DixitList of authors in order
- Landing page
-
https://doi.org/10.9734/ijecc/2023/v13i123743Publisher landing page
- PDF URL
-
https://journalijecc.com/index.php/IJECC/article/download/3743/7372Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://journalijecc.com/index.php/IJECC/article/download/3743/7372Direct OA link when available
- Concepts
-
Germplasm, Heritability, Randomized block design, Cropping, Genetic variability, Biology, Coefficient of variation, Grain yield, Veterinary medicine, Agronomy, Biotechnology, Horticulture, Genotype, Agriculture, Mathematics, Medicine, Statistics, Genetics, Ecology, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390405884 |
|---|---|
| doi | https://doi.org/10.9734/ijecc/2023/v13i123743 |
| ids.doi | https://doi.org/10.9734/ijecc/2023/v13i123743 |
| ids.openalex | https://openalex.org/W4390405884 |
| fwci | 0.0 |
| type | article |
| title | Genetic Characterization and Variability Analysis of Chickpea (Cicer arietinum) Elite Germplasm under Different Cropping Conditions |
| biblio.issue | 12 |
| biblio.volume | 13 |
| biblio.last_page | 819 |
| biblio.first_page | 803 |
| topics[0].id | https://openalex.org/T12115 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Genetic and Environmental Crop Studies |
| topics[1].id | https://openalex.org/T13125 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Agricultural pest management studies |
| topics[2].id | https://openalex.org/T11229 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Genetics and Plant Breeding |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777461220 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8068380355834961 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q589029 |
| concepts[0].display_name | Germplasm |
| concepts[1].id | https://openalex.org/C161890455 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7747601866722107 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1503548 |
| concepts[1].display_name | Heritability |
| concepts[2].id | https://openalex.org/C144938864 |
| concepts[2].level | 2 |
| concepts[2].score | 0.628119170665741 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4927286 |
| concepts[2].display_name | Randomized block design |
| concepts[3].id | https://openalex.org/C13558536 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5424950122833252 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q785116 |
| concepts[3].display_name | Cropping |
| concepts[4].id | https://openalex.org/C172777353 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5192441940307617 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1374271 |
| concepts[4].display_name | Genetic variability |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5178866386413574 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C89838059 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4680846333503723 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q623738 |
| concepts[6].display_name | Coefficient of variation |
| concepts[7].id | https://openalex.org/C2992211155 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46192046999931335 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q889514 |
| concepts[7].display_name | Grain yield |
| concepts[8].id | https://openalex.org/C42972112 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44600194692611694 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q170201 |
| concepts[8].display_name | Veterinary medicine |
| concepts[9].id | https://openalex.org/C6557445 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39207518100738525 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[9].display_name | Agronomy |
| concepts[10].id | https://openalex.org/C150903083 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3291887044906616 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7108 |
| concepts[10].display_name | Biotechnology |
| concepts[11].id | https://openalex.org/C144027150 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3233041763305664 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q48803 |
| concepts[11].display_name | Horticulture |
| concepts[12].id | https://openalex.org/C135763542 |
| concepts[12].level | 3 |
| concepts[12].score | 0.32145941257476807 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q106016 |
| concepts[12].display_name | Genotype |
| concepts[13].id | https://openalex.org/C118518473 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2232373058795929 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11451 |
| concepts[13].display_name | Agriculture |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.21880218386650085 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1670718491077423 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.12673354148864746 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C54355233 |
| concepts[17].level | 1 |
| concepts[17].score | 0.11099055409431458 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[17].display_name | Genetics |
| concepts[18].id | https://openalex.org/C18903297 |
| concepts[18].level | 1 |
| concepts[18].score | 0.06007656455039978 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[18].display_name | Ecology |
| concepts[19].id | https://openalex.org/C104317684 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[19].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/germplasm |
| keywords[0].score | 0.8068380355834961 |
| keywords[0].display_name | Germplasm |
| keywords[1].id | https://openalex.org/keywords/heritability |
| keywords[1].score | 0.7747601866722107 |
| keywords[1].display_name | Heritability |
| keywords[2].id | https://openalex.org/keywords/randomized-block-design |
| keywords[2].score | 0.628119170665741 |
| keywords[2].display_name | Randomized block design |
| keywords[3].id | https://openalex.org/keywords/cropping |
| keywords[3].score | 0.5424950122833252 |
| keywords[3].display_name | Cropping |
| keywords[4].id | https://openalex.org/keywords/genetic-variability |
| keywords[4].score | 0.5192441940307617 |
| keywords[4].display_name | Genetic variability |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.5178866386413574 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/coefficient-of-variation |
| keywords[6].score | 0.4680846333503723 |
| keywords[6].display_name | Coefficient of variation |
| keywords[7].id | https://openalex.org/keywords/grain-yield |
| keywords[7].score | 0.46192046999931335 |
| keywords[7].display_name | Grain yield |
| keywords[8].id | https://openalex.org/keywords/veterinary-medicine |
| keywords[8].score | 0.44600194692611694 |
| keywords[8].display_name | Veterinary medicine |
| keywords[9].id | https://openalex.org/keywords/agronomy |
| keywords[9].score | 0.39207518100738525 |
| keywords[9].display_name | Agronomy |
| keywords[10].id | https://openalex.org/keywords/biotechnology |
| keywords[10].score | 0.3291887044906616 |
| keywords[10].display_name | Biotechnology |
| keywords[11].id | https://openalex.org/keywords/horticulture |
| keywords[11].score | 0.3233041763305664 |
| keywords[11].display_name | Horticulture |
| keywords[12].id | https://openalex.org/keywords/genotype |
| keywords[12].score | 0.32145941257476807 |
| keywords[12].display_name | Genotype |
| keywords[13].id | https://openalex.org/keywords/agriculture |
| keywords[13].score | 0.2232373058795929 |
| keywords[13].display_name | Agriculture |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.21880218386650085 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/medicine |
| keywords[15].score | 0.1670718491077423 |
| keywords[15].display_name | Medicine |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.12673354148864746 |
| keywords[16].display_name | Statistics |
| keywords[17].id | https://openalex.org/keywords/genetics |
| keywords[17].score | 0.11099055409431458 |
| keywords[17].display_name | Genetics |
| keywords[18].id | https://openalex.org/keywords/ecology |
| keywords[18].score | 0.06007656455039978 |
| keywords[18].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.9734/ijecc/2023/v13i123743 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210233270 |
| locations[0].source.issn | 2581-8627 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2581-8627 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Environment and Climate Change |
| locations[0].source.host_organization | https://openalex.org/P4310320855 |
| locations[0].source.host_organization_name | Sciencedomain International |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320855 |
| locations[0].license | |
| locations[0].pdf_url | https://journalijecc.com/index.php/IJECC/article/download/3743/7372 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Environment and Climate Change |
| locations[0].landing_page_url | https://doi.org/10.9734/ijecc/2023/v13i123743 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5042602185 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nagmi Praween |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I290859477 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of GPB, Rajmata Vijayaraje Scandia Krishi Vishwavidyalaya, Gwalior, M.P., India. |
| authorships[0].institutions[0].id | https://openalex.org/I290859477 |
| authorships[0].institutions[0].ror | https://ror.org/01zwh2149 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I290859477 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Jawaharlal Nehru Krishi Vishwa Vidyalaya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nagmi Praween |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of GPB, Rajmata Vijayaraje Scandia Krishi Vishwavidyalaya, Gwalior, M.P., India. |
| authorships[1].author.id | https://openalex.org/A5031286415 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | R. S. Sikarwar |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I290859477 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of GPB, Rajmata Vijayaraje Scandia Krishi Vishwavidyalaya, Gwalior, M.P., India. |
| authorships[1].institutions[0].id | https://openalex.org/I290859477 |
| authorships[1].institutions[0].ror | https://ror.org/01zwh2149 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I290859477 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Jawaharlal Nehru Krishi Vishwa Vidyalaya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ravendra Singh Sikarwar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of GPB, Rajmata Vijayaraje Scandia Krishi Vishwavidyalaya, Gwalior, M.P., India. |
| authorships[2].author.id | https://openalex.org/A5073878387 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7194-5931 |
| authorships[2].author.display_name | Yogesh Kumar |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2800609603 |
| authorships[2].affiliations[0].raw_affiliation_string | ICAR-Indian Institute of Pulses research, Kanpur, Uttar Pradesh, India. |
| authorships[2].institutions[0].id | https://openalex.org/I2800609603 |
| authorships[2].institutions[0].ror | https://ror.org/0561npm29 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I2800609603 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Pulses Research |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yogesh Kumar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | ICAR-Indian Institute of Pulses research, Kanpur, Uttar Pradesh, India. |
| authorships[3].author.id | https://openalex.org/A5002075684 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0124-4050 |
| authorships[3].author.display_name | Partha Basu |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2800609603 |
| authorships[3].affiliations[0].raw_affiliation_string | ICAR-Indian Institute of Pulses research, Kanpur, Uttar Pradesh, India. |
| authorships[3].institutions[0].id | https://openalex.org/I2800609603 |
| authorships[3].institutions[0].ror | https://ror.org/0561npm29 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800609603 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Institute of Pulses Research |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | P. S. Basu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | ICAR-Indian Institute of Pulses research, Kanpur, Uttar Pradesh, India. |
| authorships[4].author.id | https://openalex.org/A5101486039 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5698-0007 |
| authorships[4].author.display_name | Biswajit Mondal |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2800609603 |
| authorships[4].affiliations[0].raw_affiliation_string | ICAR-Indian Institute of Pulses research, Kanpur, Uttar Pradesh, India. |
| authorships[4].institutions[0].id | https://openalex.org/I2800609603 |
| authorships[4].institutions[0].ror | https://ror.org/0561npm29 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I2800609603 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Indian Institute of Pulses Research |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Biswajit Mondal |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | ICAR-Indian Institute of Pulses research, Kanpur, Uttar Pradesh, India. |
| authorships[5].author.id | https://openalex.org/A5043034266 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5820-3818 |
| authorships[5].author.display_name | G. P. Dixit |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2800609603 |
| authorships[5].affiliations[0].raw_affiliation_string | ICAR-Indian Institute of Pulses research, Kanpur, Uttar Pradesh, India. |
| authorships[5].institutions[0].id | https://openalex.org/I2800609603 |
| authorships[5].institutions[0].ror | https://ror.org/0561npm29 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I2800609603 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Indian Institute of Pulses Research |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | G. P. Dixit |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | ICAR-Indian Institute of Pulses research, Kanpur, Uttar Pradesh, India. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journalijecc.com/index.php/IJECC/article/download/3743/7372 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Genetic Characterization and Variability Analysis of Chickpea (Cicer arietinum) Elite Germplasm under Different Cropping Conditions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12115 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Genetic and Environmental Crop Studies |
| related_works | https://openalex.org/W2047652376, https://openalex.org/W2613020071, https://openalex.org/W325781193, https://openalex.org/W2184740406, https://openalex.org/W4391039476, https://openalex.org/W3159379898, https://openalex.org/W4304185488, https://openalex.org/W2252799390, https://openalex.org/W2782507537, https://openalex.org/W2788608621 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.9734/ijecc/2023/v13i123743 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210233270 |
| best_oa_location.source.issn | 2581-8627 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2581-8627 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Environment and Climate Change |
| best_oa_location.source.host_organization | https://openalex.org/P4310320855 |
| best_oa_location.source.host_organization_name | Sciencedomain International |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320855 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://journalijecc.com/index.php/IJECC/article/download/3743/7372 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Environment and Climate Change |
| best_oa_location.landing_page_url | https://doi.org/10.9734/ijecc/2023/v13i123743 |
| primary_location.id | doi:10.9734/ijecc/2023/v13i123743 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210233270 |
| primary_location.source.issn | 2581-8627 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2581-8627 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Environment and Climate Change |
| primary_location.source.host_organization | https://openalex.org/P4310320855 |
| primary_location.source.host_organization_name | Sciencedomain International |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320855 |
| primary_location.license | |
| primary_location.pdf_url | https://journalijecc.com/index.php/IJECC/article/download/3743/7372 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Environment and Climate Change |
| primary_location.landing_page_url | https://doi.org/10.9734/ijecc/2023/v13i123743 |
| publication_date | 2023-12-23 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2162952006, https://openalex.org/W2052748189, https://openalex.org/W7028778352, https://openalex.org/W2029896888, https://openalex.org/W2131835552, https://openalex.org/W1489230250, https://openalex.org/W4226080439, https://openalex.org/W3008292571, https://openalex.org/W2238189816, https://openalex.org/W3086629479 |
| referenced_works_count | 10 |
| abstract_inverted_index.6 | 194 |
| abstract_inverted_index.7 | 356 |
| abstract_inverted_index.Y | 106, 177, 262, 292 |
| abstract_inverted_index.5) | 87, 119 |
| abstract_inverted_index.6) | 210, 283 |
| abstract_inverted_index.BY | 133, 266, 302 |
| abstract_inverted_index.DM | 129 |
| abstract_inverted_index.FP | 117, 186, 344 |
| abstract_inverted_index.HI | 110, 269, 316, 339 |
| abstract_inverted_index.In | 0, 88 |
| abstract_inverted_index.LS | 78, 150, 404 |
| abstract_inverted_index.PY | 108, 260, 285 |
| abstract_inverted_index.as | 253 |
| abstract_inverted_index.at | 34 |
| abstract_inverted_index.in | 30, 187, 195, 229, 375, 381, 389, 395 |
| abstract_inverted_index.is | 330 |
| abstract_inverted_index.of | 6, 37, 47, 97, 143, 162, 238, 359 |
| abstract_inverted_index.to | 43, 62, 140 |
| abstract_inverted_index.(%) | 164, 270, 317, 340 |
| abstract_inverted_index.(g) | 115, 134, 184, 267, 286, 298, 303, 308, 312, 329, 335 |
| abstract_inverted_index.113 | 3, 363 |
| abstract_inverted_index.7). | 408 |
| abstract_inverted_index.BMP | 112, 183, 311, 334 |
| abstract_inverted_index.DM, | 175 |
| abstract_inverted_index.GVC | 144 |
| abstract_inverted_index.HSW | 114, 179, 264, 297 |
| abstract_inverted_index.NSP | 136, 281, 349 |
| abstract_inverted_index.PB, | 105, 176, 257 |
| abstract_inverted_index.PC2 | 384 |
| abstract_inverted_index.PCV | 146 |
| abstract_inverted_index.PHT | 131, 255 |
| abstract_inverted_index.SPY | 328 |
| abstract_inverted_index.SYP | 103, 181, 258, 307 |
| abstract_inverted_index.TS, | 77, 149, 403 |
| abstract_inverted_index.The | 234, 247, 284 |
| abstract_inverted_index.UFP | 279, 354 |
| abstract_inverted_index.VLS | 152, 406 |
| abstract_inverted_index.all | 72, 188, 212, 275, 362, 398 |
| abstract_inverted_index.and | 14, 23, 66, 79, 85, 94, 116, 130, 135, 145, 151, 158, 185, 223, 232, 268, 280, 295, 300, 305, 314, 319, 337, 342, 346, 348, 351, 383, 405 |
| abstract_inverted_index.due | 61 |
| abstract_inverted_index.for | 40, 71, 101, 169, 205, 211, 243, 361, 370, 397 |
| abstract_inverted_index.has | 8, 367 |
| abstract_inverted_index.low | 141 |
| abstract_inverted_index.the | 45, 50, 89, 121, 138, 170, 196, 206, 276 |
| abstract_inverted_index.viz | 216 |
| abstract_inverted_index.was | 69, 99 |
| abstract_inverted_index.(%), | 111 |
| abstract_inverted_index.(LS) | 22, 222 |
| abstract_inverted_index.(g), | 104, 109, 113, 180, 182, 259, 261, 263, 265 |
| abstract_inverted_index.17.4 | 394 |
| abstract_inverted_index.30.2 | 380 |
| abstract_inverted_index.DFF, | 125, 173, 254 |
| abstract_inverted_index.DFI, | 124, 172 |
| abstract_inverted_index.DFP, | 127 |
| abstract_inverted_index.DMI, | 128, 174 |
| abstract_inverted_index.DPI, | 126 |
| abstract_inverted_index.Late | 220, 225 |
| abstract_inverted_index.Rabi | 230 |
| abstract_inverted_index.UFP, | 102 |
| abstract_inverted_index.VLS) | 80 |
| abstract_inverted_index.Very | 224 |
| abstract_inverted_index.also | 331 |
| abstract_inverted_index.been | 9, 167, 203, 368 |
| abstract_inverted_index.data | 240 |
| abstract_inverted_index.farm | 36 |
| abstract_inverted_index.have | 166, 202, 271 |
| abstract_inverted_index.late | 20, 25 |
| abstract_inverted_index.like | 327 |
| abstract_inverted_index.rabi | 12, 83, 156 |
| abstract_inverted_index.sown | 18, 21, 26, 218, 221, 226 |
| abstract_inverted_index.such | 252 |
| abstract_inverted_index.very | 24 |
| abstract_inverted_index.were | 64, 241 |
| abstract_inverted_index.with | 274, 291 |
| abstract_inverted_index.& | 373, 379, 387, 393 |
| abstract_inverted_index.(517* | 304 |
| abstract_inverted_index.(TS), | 19, 219 |
| abstract_inverted_index.(VLS) | 27, 227 |
| abstract_inverted_index.(cm), | 132, 256 |
| abstract_inverted_index.(ie., | 76 |
| abstract_inverted_index.12.66 | 388 |
| abstract_inverted_index.15.43 | 392 |
| abstract_inverted_index.22.81 | 386 |
| abstract_inverted_index.26.63 | 372 |
| abstract_inverted_index.31.46 | 374 |
| abstract_inverted_index.35.15 | 378 |
| abstract_inverted_index.While | 120 |
| abstract_inverted_index.among | 49 |
| abstract_inverted_index.block | 32, 63 |
| abstract_inverted_index.chief | 323 |
| abstract_inverted_index.error | 67 |
| abstract_inverted_index.grain | 52 |
| abstract_inverted_index.i.e., | 402 |
| abstract_inverted_index.major | 51, 248 |
| abstract_inverted_index.range | 142 |
| abstract_inverted_index.study | 2, 91, 198 |
| abstract_inverted_index.three | 73, 189, 213, 399 |
| abstract_inverted_index.under | 16, 56, 148 |
| abstract_inverted_index.value | 147, 161 |
| abstract_inverted_index.viz., | 123 |
| abstract_inverted_index.yield | 53, 249, 324 |
| abstract_inverted_index.(Table | 118, 193, 209, 282, 355, 407 |
| abstract_inverted_index.18.96, | 391 |
| abstract_inverted_index.29.87, | 377 |
| abstract_inverted_index.During | 155 |
| abstract_inverted_index.Kanpur | 39 |
| abstract_inverted_index.Timely | 217 |
| abstract_inverted_index.access | 44 |
| abstract_inverted_index.design | 33 |
| abstract_inverted_index.during | 11, 82 |
| abstract_inverted_index.except | 278, 353 |
| abstract_inverted_index.pooled | 239 |
| abstract_inverted_index.strong | 288 |
| abstract_inverted_index.timely | 17 |
| abstract_inverted_index.traits | 55, 122, 171, 246, 251, 277, 326 |
| abstract_inverted_index.trials | 75, 215, 401 |
| abstract_inverted_index.values | 208 |
| abstract_inverted_index.>60% | 165 |
| abstract_inverted_index.(0.456* | 350 |
| abstract_inverted_index.(0.459* | 318 |
| abstract_inverted_index.(0.536* | 336 |
| abstract_inverted_index.(0.544* | 299 |
| abstract_inverted_index.(0.553* | 313 |
| abstract_inverted_index.(24.19, | 385 |
| abstract_inverted_index.(Kg/ha) | 293 |
| abstract_inverted_index.0.503*) | 352 |
| abstract_inverted_index.2019-20 | 13, 84, 157, 231 |
| abstract_inverted_index.2020-21 | 15 |
| abstract_inverted_index.Highest | 160 |
| abstract_inverted_index.Pearson | 235 |
| abstract_inverted_index.another | 322 |
| abstract_inverted_index.current | 1, 197 |
| abstract_inverted_index.diverse | 4, 364 |
| abstract_inverted_index.genetic | 41 |
| abstract_inverted_index.highest | 92 |
| abstract_inverted_index.maximum | 357 |
| abstract_inverted_index.observe | 168 |
| abstract_inverted_index.present | 90 |
| abstract_inverted_index.(0.678** | 341 |
| abstract_inverted_index.(0.774** | 345 |
| abstract_inverted_index.(0.857** | 294 |
| abstract_inverted_index.(kg/ha), | 107, 178 |
| abstract_inverted_index.0.412*); | 301 |
| abstract_inverted_index.0.494*); | 315 |
| abstract_inverted_index.0.506*); | 310 |
| abstract_inverted_index.0.964**) | 347 |
| abstract_inverted_index.2019-20; | 376, 390 |
| abstract_inverted_index.2020-21) | 382, 396 |
| abstract_inverted_index.2020-21. | 159 |
| abstract_inverted_index.Eighteen | 244 |
| abstract_inverted_index.analysis | 201 |
| abstract_inverted_index.changing | 57 |
| abstract_inverted_index.chickpea | 7, 365 |
| abstract_inverted_index.cropping | 28, 58, 153, 191 |
| abstract_inverted_index.moderate | 139 |
| abstract_inverted_index.observed | 100 |
| abstract_inverted_index.positive | 289 |
| abstract_inverted_index.presence | 46 |
| abstract_inverted_index.recorded | 369 |
| abstract_inverted_index.research | 35 |
| abstract_inverted_index.separate | 400 |
| abstract_inverted_index.variance | 68, 360 |
| abstract_inverted_index.0.682**); | 338 |
| abstract_inverted_index.0.706**). | 320 |
| abstract_inverted_index.0.779**); | 343 |
| abstract_inverted_index.0.856**); | 306 |
| abstract_inverted_index.0.964**); | 296 |
| abstract_inverted_index.Variation | 60 |
| abstract_inverted_index.augmented | 31 |
| abstract_inverted_index.conducted | 81, 228 |
| abstract_inverted_index.different | 74, 190, 214 |
| abstract_inverted_index.estimated | 204 |
| abstract_inverted_index.evaluated | 10 |
| abstract_inverted_index.exhibited | 137, 287 |
| abstract_inverted_index.genotypes | 5, 366 |
| abstract_inverted_index.genotypic | 93 |
| abstract_inverted_index.variation | 98 |
| abstract_inverted_index.2020-2021. | 233 |
| abstract_inverted_index.ICAR-IIPR, | 38 |
| abstract_inverted_index.PC1(26.83, | 371 |
| abstract_inverted_index.Similarly, | 321 |
| abstract_inverted_index.calculated | 242 |
| abstract_inverted_index.conditions | 154 |
| abstract_inverted_index.correlated | 273, 333 |
| abstract_inverted_index.percentage | 358 |
| abstract_inverted_index.phenotypic | 95 |
| abstract_inverted_index.positively | 332 |
| abstract_inverted_index.(0.628**and | 309 |
| abstract_inverted_index.Correlation | 207 |
| abstract_inverted_index.attributing | 54 |
| abstract_inverted_index.coefficient | 96, 200 |
| abstract_inverted_index.conditions. | 59 |
| abstract_inverted_index.correlation | 199, 236, 290 |
| abstract_inverted_index.environment | 29 |
| abstract_inverted_index.significant | 70 |
| abstract_inverted_index.variability | 48 |
| abstract_inverted_index.coefficients | 237 |
| abstract_inverted_index.contributing | 250, 325 |
| abstract_inverted_index.environments | 192 |
| abstract_inverted_index.heritability | 163 |
| abstract_inverted_index.2020-21(Table | 86 |
| abstract_inverted_index.insignificant | 65 |
| abstract_inverted_index.morphological | 245 |
| abstract_inverted_index.significantly | 272 |
| abstract_inverted_index.characterization | 42 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.47999998927116394 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.10146955 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |