Genetic classification of various familial relationships using the stacking ensemble machine learning approaches Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.29220/csam.2024.31.3.279
Familial searching is a useful technique in a forensic investigation.Using genetic information, it is possible to identify individuals, determine familial relationships, and obtain racial/ethnic information.The total number of shared alleles (TNSA) and likelihood ratio (LR) methods have traditionally been used, and novel data-mining classification methods have recently been applied here as well.However, it is difficult to apply these methods to identify familial relationships above the third degree (e.g., uncle-nephew and first cousins).Therefore, we propose to apply a stacking ensemble machine learning algorithm to improve the accuracy of familial relationship identification.Using real data analysis, we obtain superior relationship identification results when applying metaclassifiers with a stacking algorithm rather than applying traditional TNSA or LR methods and data mining techniques.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.29220/csam.2024.31.3.279
- http://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2024.31.3.279
- OA Status
- diamond
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399247028
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399247028Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.29220/csam.2024.31.3.279Digital Object Identifier
- Title
-
Genetic classification of various familial relationships using the stacking ensemble machine learning approachesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-31Full publication date if available
- Authors
-
Su Jin Jeong, Hyo‐Jung Lee, Soong Deok Lee, Ji Eun Park, Jae Won LeeList of authors in order
- Landing page
-
https://doi.org/10.29220/csam.2024.31.3.279Publisher landing page
- PDF URL
-
https://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2024.31.3.279Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2024.31.3.279Direct OA link when available
- Concepts
-
Stacking, Ensemble learning, Artificial intelligence, Machine learning, Computer science, Genetic algorithm, Pattern recognition (psychology), Chemistry, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399247028 |
|---|---|
| doi | https://doi.org/10.29220/csam.2024.31.3.279 |
| ids.doi | https://doi.org/10.29220/csam.2024.31.3.279 |
| ids.openalex | https://openalex.org/W4399247028 |
| fwci | 0.0 |
| type | article |
| title | Genetic classification of various familial relationships using the stacking ensemble machine learning approaches |
| awards[0].id | https://openalex.org/G5259851025 |
| awards[0].funder_id | https://openalex.org/F4320322120 |
| awards[0].display_name | |
| awards[0].funder_award_id | RS-2023-00208882 |
| awards[0].funder_display_name | National Research Foundation of Korea |
| awards[1].id | https://openalex.org/G581756257 |
| awards[1].funder_id | https://openalex.org/F4320334869 |
| awards[1].display_name | |
| awards[1].funder_award_id | PR10-04-000-22 |
| awards[1].funder_display_name | Korean National Police Agency |
| biblio.issue | 3 |
| biblio.volume | 31 |
| biblio.last_page | 289 |
| biblio.first_page | 279 |
| topics[0].id | https://openalex.org/T10885 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.3345000147819519 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene expression and cancer classification |
| funders[0].id | https://openalex.org/F4320322120 |
| funders[0].ror | https://ror.org/013aysd81 |
| funders[0].display_name | National Research Foundation of Korea |
| funders[1].id | https://openalex.org/F4320328359 |
| funders[1].ror | https://ror.org/01wpjm123 |
| funders[1].display_name | Ministry of Science and ICT, South Korea |
| funders[2].id | https://openalex.org/F4320334869 |
| funders[2].ror | https://ror.org/05x57gp50 |
| funders[2].display_name | Korean National Police Agency |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33347731 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7401684522628784 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q285210 |
| concepts[0].display_name | Stacking |
| concepts[1].id | https://openalex.org/C45942800 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7034959197044373 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[1].display_name | Ensemble learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5961326360702515 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5922993421554565 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.49190402030944824 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C8880873 |
| concepts[5].level | 2 |
| concepts[5].score | 0.41753169894218445 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[5].display_name | Genetic algorithm |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.34772592782974243 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C185592680 |
| concepts[7].level | 0 |
| concepts[7].score | 0.11744540929794312 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[7].display_name | Chemistry |
| concepts[8].id | https://openalex.org/C178790620 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[8].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/stacking |
| keywords[0].score | 0.7401684522628784 |
| keywords[0].display_name | Stacking |
| keywords[1].id | https://openalex.org/keywords/ensemble-learning |
| keywords[1].score | 0.7034959197044373 |
| keywords[1].display_name | Ensemble learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5961326360702515 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5922993421554565 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.49190402030944824 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[5].score | 0.41753169894218445 |
| keywords[5].display_name | Genetic algorithm |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.34772592782974243 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/chemistry |
| keywords[7].score | 0.11744540929794312 |
| keywords[7].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.29220/csam.2024.31.3.279 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764911580 |
| locations[0].source.issn | 2287-7843, 2383-4757 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2287-7843 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Communications for Statistical Applications and Methods |
| locations[0].source.host_organization | https://openalex.org/P4360969203 |
| locations[0].source.host_organization_name | Korean Statistical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4360969203 |
| locations[0].source.host_organization_lineage_names | Korean Statistical Society |
| locations[0].license | |
| locations[0].pdf_url | http://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2024.31.3.279 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Communications for Statistical Applications and Methods |
| locations[0].landing_page_url | https://doi.org/10.29220/csam.2024.31.3.279 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5018155109 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6754-8925 |
| authorships[0].author.display_name | Su Jin Jeong |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210112503 |
| authorships[0].affiliations[0].raw_affiliation_string | Statistics Support Part, Medical Science Research Institute, Kyung Hee University Medical Center, Korea |
| authorships[0].institutions[0].id | https://openalex.org/I4210112503 |
| authorships[0].institutions[0].ror | https://ror.org/01vbmek33 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I35928602, https://openalex.org/I4210112503, https://openalex.org/I4412460511 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Kyung Hee University Medical Center |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Su Jin Jeong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Statistics Support Part, Medical Science Research Institute, Kyung Hee University Medical Center, Korea |
| authorships[1].author.id | https://openalex.org/A5100609256 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0439-7389 |
| authorships[1].author.display_name | Hyo‐Jung Lee |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210095185, https://openalex.org/I4210155763 |
| authorships[1].affiliations[0].raw_affiliation_string | Product Development HQ, Dong-A ST, Korea |
| authorships[1].institutions[0].id | https://openalex.org/I4210155763 |
| authorships[1].institutions[0].ror | https://ror.org/05ctcx759 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210155763 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Dong-A Pharmaceutical (South Korea) |
| authorships[1].institutions[1].id | https://openalex.org/I4210095185 |
| authorships[1].institutions[1].ror | https://ror.org/00mfpj979 |
| authorships[1].institutions[1].type | company |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210095185 |
| authorships[1].institutions[1].country_code | KR |
| authorships[1].institutions[1].display_name | Dong-A ST (South Korea) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hyo-Jung Lee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Product Development HQ, Dong-A ST, Korea |
| authorships[2].author.id | https://openalex.org/A5081941077 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4270-4279 |
| authorships[2].author.display_name | Soong Deok Lee |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Forensic Medicine, College of Medicine, Seoul National University, Korea |
| authorships[2].institutions[0].id | https://openalex.org/I139264467 |
| authorships[2].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Seoul National University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Soong Deok Lee |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Forensic Medicine, College of Medicine, Seoul National University, Korea |
| authorships[3].author.id | https://openalex.org/A5100335500 |
| authorships[3].author.orcid | https://orcid.org/0009-0004-9279-4860 |
| authorships[3].author.display_name | Ji Eun Park |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1317225278, https://openalex.org/I197347611 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Statistics, Korea University, Korea |
| authorships[3].institutions[0].id | https://openalex.org/I197347611 |
| authorships[3].institutions[0].ror | https://ror.org/047dqcg40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I197347611 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Korea University |
| authorships[3].institutions[1].id | https://openalex.org/I1317225278 |
| authorships[3].institutions[1].ror | https://ror.org/004g7jm05 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I1317225278, https://openalex.org/I2801339556, https://openalex.org/I4210126005 |
| authorships[3].institutions[1].country_code | KR |
| authorships[3].institutions[1].display_name | Statistics Korea |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ji Eun Park |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Statistics, Korea University, Korea |
| authorships[4].author.id | https://openalex.org/A5100330921 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3718-2704 |
| authorships[4].author.display_name | Jae Won Lee |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1317225278, https://openalex.org/I197347611 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Statistics, Korea University, Korea |
| authorships[4].institutions[0].id | https://openalex.org/I197347611 |
| authorships[4].institutions[0].ror | https://ror.org/047dqcg40 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I197347611 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Korea University |
| authorships[4].institutions[1].id | https://openalex.org/I1317225278 |
| authorships[4].institutions[1].ror | https://ror.org/004g7jm05 |
| authorships[4].institutions[1].type | government |
| authorships[4].institutions[1].lineage | https://openalex.org/I1317225278, https://openalex.org/I2801339556, https://openalex.org/I4210126005 |
| authorships[4].institutions[1].country_code | KR |
| authorships[4].institutions[1].display_name | Statistics Korea |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jae Won Lee |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Statistics, Korea University, Korea |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2024.31.3.279 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Genetic classification of various familial relationships using the stacking ensemble machine learning approaches |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10885 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.3345000147819519 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene expression and cancer classification |
| related_works | https://openalex.org/W4376643315, https://openalex.org/W4324137541, https://openalex.org/W2900445707, https://openalex.org/W4285741730, https://openalex.org/W1191482210, https://openalex.org/W4285046548, https://openalex.org/W4210302090, https://openalex.org/W3092276832, https://openalex.org/W3111529524, https://openalex.org/W4375951447 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.29220/csam.2024.31.3.279 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764911580 |
| best_oa_location.source.issn | 2287-7843, 2383-4757 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2287-7843 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Communications for Statistical Applications and Methods |
| best_oa_location.source.host_organization | https://openalex.org/P4360969203 |
| best_oa_location.source.host_organization_name | Korean Statistical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4360969203 |
| best_oa_location.source.host_organization_lineage_names | Korean Statistical Society |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2024.31.3.279 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Communications for Statistical Applications and Methods |
| best_oa_location.landing_page_url | https://doi.org/10.29220/csam.2024.31.3.279 |
| primary_location.id | doi:10.29220/csam.2024.31.3.279 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764911580 |
| primary_location.source.issn | 2287-7843, 2383-4757 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2287-7843 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Communications for Statistical Applications and Methods |
| primary_location.source.host_organization | https://openalex.org/P4360969203 |
| primary_location.source.host_organization_name | Korean Statistical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4360969203 |
| primary_location.source.host_organization_lineage_names | Korean Statistical Society |
| primary_location.license | |
| primary_location.pdf_url | http://www.csam.or.kr/journal/download_pdf.php?doi=10.29220/CSAM.2024.31.3.279 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Communications for Statistical Applications and Methods |
| primary_location.landing_page_url | https://doi.org/10.29220/csam.2024.31.3.279 |
| publication_date | 2024-05-31 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1985258161, https://openalex.org/W2028070629, https://openalex.org/W2118250684, https://openalex.org/W2053214834, https://openalex.org/W2911964244, https://openalex.org/W1494262138, https://openalex.org/W128589846, https://openalex.org/W2295598076, https://openalex.org/W2171955859, https://openalex.org/W2903950532, https://openalex.org/W2046649434, https://openalex.org/W2972977879, https://openalex.org/W2808484430, https://openalex.org/W861534763, https://openalex.org/W2471104003, https://openalex.org/W2171710598, https://openalex.org/W2970162974, https://openalex.org/W1977146339, https://openalex.org/W2155806188, https://openalex.org/W1978172570, https://openalex.org/W2098290597, https://openalex.org/W1965843245 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 3, 7, 76, 103 |
| abstract_inverted_index.LR | 112 |
| abstract_inverted_index.as | 50 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 2, 13, 53 |
| abstract_inverted_index.it | 12, 52 |
| abstract_inverted_index.of | 27, 86 |
| abstract_inverted_index.or | 111 |
| abstract_inverted_index.to | 15, 55, 59, 74, 82 |
| abstract_inverted_index.we | 72, 93 |
| abstract_inverted_index.and | 21, 31, 40, 69, 114 |
| abstract_inverted_index.the | 64, 84 |
| abstract_inverted_index.(LR) | 34 |
| abstract_inverted_index.TNSA | 110 |
| abstract_inverted_index.been | 38, 47 |
| abstract_inverted_index.data | 91, 115 |
| abstract_inverted_index.have | 36, 45 |
| abstract_inverted_index.here | 49 |
| abstract_inverted_index.real | 90 |
| abstract_inverted_index.than | 107 |
| abstract_inverted_index.when | 99 |
| abstract_inverted_index.with | 102 |
| abstract_inverted_index.above | 63 |
| abstract_inverted_index.apply | 56, 75 |
| abstract_inverted_index.first | 70 |
| abstract_inverted_index.novel | 41 |
| abstract_inverted_index.ratio | 33 |
| abstract_inverted_index.these | 57 |
| abstract_inverted_index.third | 65 |
| abstract_inverted_index.total | 25 |
| abstract_inverted_index.used, | 39 |
| abstract_inverted_index.(TNSA) | 30 |
| abstract_inverted_index.(e.g., | 67 |
| abstract_inverted_index.degree | 66 |
| abstract_inverted_index.mining | 116 |
| abstract_inverted_index.number | 26 |
| abstract_inverted_index.obtain | 22, 94 |
| abstract_inverted_index.rather | 106 |
| abstract_inverted_index.shared | 28 |
| abstract_inverted_index.useful | 4 |
| abstract_inverted_index.alleles | 29 |
| abstract_inverted_index.applied | 48 |
| abstract_inverted_index.genetic | 10 |
| abstract_inverted_index.improve | 83 |
| abstract_inverted_index.machine | 79 |
| abstract_inverted_index.methods | 35, 44, 58, 113 |
| abstract_inverted_index.propose | 73 |
| abstract_inverted_index.results | 98 |
| abstract_inverted_index.Familial | 0 |
| abstract_inverted_index.accuracy | 85 |
| abstract_inverted_index.applying | 100, 108 |
| abstract_inverted_index.ensemble | 78 |
| abstract_inverted_index.familial | 19, 61, 87 |
| abstract_inverted_index.forensic | 8 |
| abstract_inverted_index.identify | 16, 60 |
| abstract_inverted_index.learning | 80 |
| abstract_inverted_index.possible | 14 |
| abstract_inverted_index.recently | 46 |
| abstract_inverted_index.stacking | 77, 104 |
| abstract_inverted_index.superior | 95 |
| abstract_inverted_index.algorithm | 81, 105 |
| abstract_inverted_index.analysis, | 92 |
| abstract_inverted_index.determine | 18 |
| abstract_inverted_index.difficult | 54 |
| abstract_inverted_index.searching | 1 |
| abstract_inverted_index.technique | 5 |
| abstract_inverted_index.likelihood | 32 |
| abstract_inverted_index.data-mining | 42 |
| abstract_inverted_index.techniques. | 117 |
| abstract_inverted_index.traditional | 109 |
| abstract_inverted_index.individuals, | 17 |
| abstract_inverted_index.information, | 11 |
| abstract_inverted_index.relationship | 88, 96 |
| abstract_inverted_index.uncle-nephew | 68 |
| abstract_inverted_index.racial/ethnic | 23 |
| abstract_inverted_index.relationships | 62 |
| abstract_inverted_index.traditionally | 37 |
| abstract_inverted_index.well.However, | 51 |
| abstract_inverted_index.classification | 43 |
| abstract_inverted_index.identification | 97 |
| abstract_inverted_index.relationships, | 20 |
| abstract_inverted_index.information.The | 24 |
| abstract_inverted_index.metaclassifiers | 101 |
| abstract_inverted_index.cousins).Therefore, | 71 |
| abstract_inverted_index.investigation.Using | 9 |
| abstract_inverted_index.identification.Using | 89 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.09562462 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |