Genetic Prediction Modeling in Large Cohort Studies via Boosting Targeted Loss Functions Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1002/sim.10249
Polygenic risk scores (PRS) aim to predict a trait from genetic information, relying on common genetic variants with low to medium effect sizes. As genotype data are high‐dimensional in nature, it is crucial to develop methods that can be applied to large‐scale data (large and large ). Many PRS tools aggregate univariate summary statistics from genome‐wide association studies into a single score. Recent advancements allow simultaneous modeling of variant effects from individual‐level genotype data. In this context, we introduced snpboost, an algorithm that applies statistical boosting on individual‐level genotype data to estimate PRS via multivariable regression models. By processing variants iteratively in batches, snpboost can deal with large‐scale cohort data. Having solved the technical obstacles due to data dimensionality, the methodological scope can now be broadened—focusing on key objectives for the clinical application of PRS. Similar to most methods in this context, snpboost has, so far, been restricted to quantitative and binary traits. Now, we incorporate more advanced alternatives—targeted to the particular aim and outcome. Adapting the loss function extends the snpboost framework to further data situations such as time‐to‐event and count data. Furthermore, alternative loss functions for continuous outcomes allow us to focus not only on the mean of the conditional distribution but also on other aspects that may be more helpful in the risk stratification of individual patients and can quantify prediction uncertainty, for example, median or quantile regression. This work enhances PRS fitting across multiple model classes previously unfeasible for this data type.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/sim.10249
- OA Status
- green
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403692598
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403692598Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/sim.10249Digital Object Identifier
- Title
-
Genetic Prediction Modeling in Large Cohort Studies via Boosting Targeted Loss FunctionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-23Full publication date if available
- Authors
-
Hannah Klinkhammer, Christian Staerk, Carlo Maj, Peter Krawitz, Andreas MayrList of authors in order
- Landing page
-
https://doi.org/10.1002/sim.10249Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/11586906Direct OA link when available
- Concepts
-
Univariate, Computer science, Boosting (machine learning), Context (archaeology), Data mining, Machine learning, Regression, Statistics, Quantile, Econometrics, Artificial intelligence, Mathematics, Multivariate statistics, Biology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403692598 |
|---|---|
| doi | https://doi.org/10.1002/sim.10249 |
| ids.doi | https://doi.org/10.1002/sim.10249 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39440393 |
| ids.openalex | https://openalex.org/W4403692598 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D015331 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Cohort Studies |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000465 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Algorithms |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D055106 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Genome-Wide Association Study |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008957 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Models, Genetic |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D020412 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Multifactorial Inheritance |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D003198 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Computer Simulation |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D020641 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005838 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Genotype |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D015233 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Models, Statistical |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D020022 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Genetic Predisposition to Disease |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D006801 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Humans |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D015331 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Cohort Studies |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000465 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Algorithms |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D055106 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Genome-Wide Association Study |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D008957 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Models, Genetic |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D020412 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Multifactorial Inheritance |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D003198 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Computer Simulation |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D020641 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D005838 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Genotype |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D015233 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Models, Statistical |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D020022 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Genetic Predisposition to Disease |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D006801 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Humans |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D015331 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Cohort Studies |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000465 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Algorithms |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D055106 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Genome-Wide Association Study |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D008957 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Models, Genetic |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D020412 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Multifactorial Inheritance |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D003198 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Computer Simulation |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D020641 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D005838 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Genotype |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D015233 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Models, Statistical |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D020022 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Genetic Predisposition to Disease |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D006801 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Humans |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D015331 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Cohort Studies |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D000465 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Algorithms |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D055106 |
| mesh[36].is_major_topic | True |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Genome-Wide Association Study |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D008957 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Models, Genetic |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D020412 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Multifactorial Inheritance |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D003198 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Computer Simulation |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D020641 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Polymorphism, Single Nucleotide |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D005838 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Genotype |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D015233 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Models, Statistical |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D020022 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Genetic Predisposition to Disease |
| type | article |
| title | Genetic Prediction Modeling in Large Cohort Studies via Boosting Targeted Loss Functions |
| biblio.issue | 28 |
| biblio.volume | 43 |
| biblio.last_page | 5430 |
| biblio.first_page | 5412 |
| topics[0].id | https://openalex.org/T10261 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1311 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Genetic Associations and Epidemiology |
| topics[1].id | https://openalex.org/T11468 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.989799976348877 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1311 |
| topics[1].subfield.display_name | Genetics |
| topics[1].display_name | Genetic Mapping and Diversity in Plants and Animals |
| topics[2].id | https://openalex.org/T10594 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9879000186920166 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1311 |
| topics[2].subfield.display_name | Genetics |
| topics[2].display_name | Genetic and phenotypic traits in livestock |
| is_xpac | False |
| apc_list.value | 4940 |
| apc_list.currency | USD |
| apc_list.value_usd | 4940 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C199163554 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6802651286125183 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1681619 |
| concepts[0].display_name | Univariate |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6295108199119568 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C46686674 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5236884355545044 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[2].display_name | Boosting (machine learning) |
| concepts[3].id | https://openalex.org/C2779343474 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5077913403511047 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[3].display_name | Context (archaeology) |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4857821762561798 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4416443109512329 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C83546350 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4354267120361328 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[6].display_name | Regression |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43397843837738037 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C118671147 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4223184883594513 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q578714 |
| concepts[8].display_name | Quantile |
| concepts[9].id | https://openalex.org/C149782125 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4072836637496948 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[9].display_name | Econometrics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3276821970939636 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.19774052500724792 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C161584116 |
| concepts[12].level | 2 |
| concepts[12].score | 0.1694413125514984 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[12].display_name | Multivariate statistics |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.10826775431632996 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C151730666 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[14].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/univariate |
| keywords[0].score | 0.6802651286125183 |
| keywords[0].display_name | Univariate |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6295108199119568 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/boosting |
| keywords[2].score | 0.5236884355545044 |
| keywords[2].display_name | Boosting (machine learning) |
| keywords[3].id | https://openalex.org/keywords/context |
| keywords[3].score | 0.5077913403511047 |
| keywords[3].display_name | Context (archaeology) |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.4857821762561798 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.4416443109512329 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/regression |
| keywords[6].score | 0.4354267120361328 |
| keywords[6].display_name | Regression |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.43397843837738037 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/quantile |
| keywords[8].score | 0.4223184883594513 |
| keywords[8].display_name | Quantile |
| keywords[9].id | https://openalex.org/keywords/econometrics |
| keywords[9].score | 0.4072836637496948 |
| keywords[9].display_name | Econometrics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3276821970939636 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.19774052500724792 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[12].score | 0.1694413125514984 |
| keywords[12].display_name | Multivariate statistics |
| keywords[13].id | https://openalex.org/keywords/biology |
| keywords[13].score | 0.10826775431632996 |
| keywords[13].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1002/sim.10249 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S55189604 |
| locations[0].source.issn | 0277-6715, 1097-0258 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0277-6715 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Statistics in Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Statistics in Medicine |
| locations[0].landing_page_url | https://doi.org/10.1002/sim.10249 |
| locations[1].id | pmid:39440393 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Statistics in medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39440393 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11586906 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Stat Med |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11586906 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5021345672 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3752-1275 |
| authorships[0].author.display_name | Hannah Klinkhammer |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135140700 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Genomic Statistics and Bioinformatics, Medical Faculty University of Bonn Bonn Germany |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I135140700, https://openalex.org/I4210093117 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty University of Bonn Bonn Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4210093117 |
| authorships[0].institutions[0].ror | https://ror.org/00hyd8090 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I135140700, https://openalex.org/I4210093117 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Institut für Medizinische Biometrie, Informatik und Epidemiologie |
| authorships[0].institutions[1].id | https://openalex.org/I135140700 |
| authorships[0].institutions[1].ror | https://ror.org/041nas322 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I135140700 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | University of Bonn |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hannah Klinkhammer |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Genomic Statistics and Bioinformatics, Medical Faculty University of Bonn Bonn Germany, Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty University of Bonn Bonn Germany |
| authorships[1].author.id | https://openalex.org/A5067210732 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0526-0189 |
| authorships[1].author.display_name | Christian Staerk |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I135140700, https://openalex.org/I4210093117 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty University of Bonn Bonn Germany |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I200332995 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Statistics TU Dortmund University Dortmund Germany |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I4210101048 |
| authorships[1].affiliations[2].raw_affiliation_string | IUF – Leibniz Research Institute for Environmental Medicine Düsseldorf Germany |
| authorships[1].institutions[0].id | https://openalex.org/I4210093117 |
| authorships[1].institutions[0].ror | https://ror.org/00hyd8090 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I135140700, https://openalex.org/I4210093117 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Institut für Medizinische Biometrie, Informatik und Epidemiologie |
| authorships[1].institutions[1].id | https://openalex.org/I4210101048 |
| authorships[1].institutions[1].ror | https://ror.org/0163xqp73 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I315704651, https://openalex.org/I4210101048 |
| authorships[1].institutions[1].country_code | DE |
| authorships[1].institutions[1].display_name | Leibniz Institute of Environmental Medicine |
| authorships[1].institutions[2].id | https://openalex.org/I200332995 |
| authorships[1].institutions[2].ror | https://ror.org/01k97gp34 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I200332995 |
| authorships[1].institutions[2].country_code | DE |
| authorships[1].institutions[2].display_name | TU Dortmund University |
| authorships[1].institutions[3].id | https://openalex.org/I135140700 |
| authorships[1].institutions[3].ror | https://ror.org/041nas322 |
| authorships[1].institutions[3].type | education |
| authorships[1].institutions[3].lineage | https://openalex.org/I135140700 |
| authorships[1].institutions[3].country_code | DE |
| authorships[1].institutions[3].display_name | University of Bonn |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Christian Staerk |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics TU Dortmund University Dortmund Germany, IUF – Leibniz Research Institute for Environmental Medicine Düsseldorf Germany, Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty University of Bonn Bonn Germany |
| authorships[2].author.id | https://openalex.org/A5032669663 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9559-1725 |
| authorships[2].author.display_name | Carlo Maj |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I161103922 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Human Genetics Philipps‐University Marburg Marburg Germany |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I135140700 |
| authorships[2].affiliations[1].raw_affiliation_string | Institute of Genomic Statistics and Bioinformatics, Medical Faculty University of Bonn Bonn Germany |
| authorships[2].institutions[0].id | https://openalex.org/I161103922 |
| authorships[2].institutions[0].ror | https://ror.org/01rdrb571 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I161103922 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Philipps University of Marburg |
| authorships[2].institutions[1].id | https://openalex.org/I135140700 |
| authorships[2].institutions[1].ror | https://ror.org/041nas322 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I135140700 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | University of Bonn |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Carlo Maj |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Human Genetics Philipps‐University Marburg Marburg Germany, Institute of Genomic Statistics and Bioinformatics, Medical Faculty University of Bonn Bonn Germany |
| authorships[3].author.id | https://openalex.org/A5013713722 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3194-8625 |
| authorships[3].author.display_name | Peter Krawitz |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135140700 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Genomic Statistics and Bioinformatics, Medical Faculty University of Bonn Bonn Germany |
| authorships[3].institutions[0].id | https://openalex.org/I135140700 |
| authorships[3].institutions[0].ror | https://ror.org/041nas322 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | University of Bonn |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Peter M. Krawitz |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Genomic Statistics and Bioinformatics, Medical Faculty University of Bonn Bonn Germany |
| authorships[4].author.id | https://openalex.org/A5085125500 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7106-9732 |
| authorships[4].author.display_name | Andreas Mayr |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I135140700, https://openalex.org/I4210093117 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty University of Bonn Bonn Germany |
| authorships[4].institutions[0].id | https://openalex.org/I4210093117 |
| authorships[4].institutions[0].ror | https://ror.org/00hyd8090 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I135140700, https://openalex.org/I4210093117 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Institut für Medizinische Biometrie, Informatik und Epidemiologie |
| authorships[4].institutions[1].id | https://openalex.org/I135140700 |
| authorships[4].institutions[1].ror | https://ror.org/041nas322 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I135140700 |
| authorships[4].institutions[1].country_code | DE |
| authorships[4].institutions[1].display_name | University of Bonn |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Andreas Mayr |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty University of Bonn Bonn Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11586906 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Genetic Prediction Modeling in Large Cohort Studies via Boosting Targeted Loss Functions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10261 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1311 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Genetic Associations and Epidemiology |
| related_works | https://openalex.org/W1488761988, https://openalex.org/W2044551864, https://openalex.org/W1572557500, https://openalex.org/W3124946120, https://openalex.org/W1828158523, https://openalex.org/W2047938026, https://openalex.org/W4390690393, https://openalex.org/W2096128876, https://openalex.org/W3082059448, https://openalex.org/W4313640622 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:11586906 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Stat Med |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11586906 |
| primary_location.id | doi:10.1002/sim.10249 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S55189604 |
| primary_location.source.issn | 0277-6715, 1097-0258 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0277-6715 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Statistics in Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Statistics in Medicine |
| primary_location.landing_page_url | https://doi.org/10.1002/sim.10249 |
| publication_date | 2024-10-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4386244992, https://openalex.org/W3216855157, https://openalex.org/W2949626150, https://openalex.org/W3111018742, https://openalex.org/W2958615822, https://openalex.org/W4315472677, https://openalex.org/W3093838039, https://openalex.org/W3091160076, https://openalex.org/W3004732066, https://openalex.org/W1988790447, https://openalex.org/W2528251910, https://openalex.org/W2413972587, https://openalex.org/W4246259708, https://openalex.org/W4214512856, https://openalex.org/W2076313071, https://openalex.org/W3147894994, https://openalex.org/W2169033570, https://openalex.org/W1966455406, https://openalex.org/W2323052220, https://openalex.org/W1982059269, https://openalex.org/W6634147026, https://openalex.org/W2171847515, https://openalex.org/W4399746524, https://openalex.org/W4241996101, https://openalex.org/W1968927350, https://openalex.org/W2102619694, https://openalex.org/W3145969289, https://openalex.org/W2981587292, https://openalex.org/W2964362771, https://openalex.org/W3099804490, https://openalex.org/W4220916785, https://openalex.org/W3082742806, https://openalex.org/W2079898917, https://openalex.org/W4327811512, https://openalex.org/W4296458355, https://openalex.org/W3144454794, https://openalex.org/W2120579447, https://openalex.org/W1992549534, https://openalex.org/W2074147832, https://openalex.org/W3113240407, https://openalex.org/W2017008479, https://openalex.org/W1573647811, https://openalex.org/W2086934780, https://openalex.org/W2934861239, https://openalex.org/W2980860741, https://openalex.org/W2896917800, https://openalex.org/W3111222208, https://openalex.org/W2154065358, https://openalex.org/W4284957948, https://openalex.org/W4386571429, https://openalex.org/W2070493638, https://openalex.org/W4317390715, https://openalex.org/W3153627691, https://openalex.org/W2895486342, https://openalex.org/W2951553270, https://openalex.org/W4386419165, https://openalex.org/W4380785855, https://openalex.org/W3139106591, https://openalex.org/W2099085143, https://openalex.org/W2503920952, https://openalex.org/W2108694197 |
| referenced_works_count | 61 |
| abstract_inverted_index.a | 8, 60 |
| abstract_inverted_index.). | 47 |
| abstract_inverted_index.As | 24 |
| abstract_inverted_index.By | 98 |
| abstract_inverted_index.In | 75 |
| abstract_inverted_index.an | 81 |
| abstract_inverted_index.as | 179 |
| abstract_inverted_index.be | 39, 125, 211 |
| abstract_inverted_index.in | 29, 102, 140, 214 |
| abstract_inverted_index.is | 32 |
| abstract_inverted_index.it | 31 |
| abstract_inverted_index.of | 68, 134, 200, 218 |
| abstract_inverted_index.on | 14, 87, 127, 197, 206 |
| abstract_inverted_index.or | 229 |
| abstract_inverted_index.so | 145 |
| abstract_inverted_index.to | 6, 20, 34, 41, 91, 117, 137, 149, 160, 174, 193 |
| abstract_inverted_index.us | 192 |
| abstract_inverted_index.we | 78, 155 |
| abstract_inverted_index.PRS | 49, 93, 235 |
| abstract_inverted_index.aim | 5, 163 |
| abstract_inverted_index.and | 45, 151, 164, 181, 221 |
| abstract_inverted_index.are | 27 |
| abstract_inverted_index.but | 204 |
| abstract_inverted_index.can | 38, 105, 123, 222 |
| abstract_inverted_index.due | 116 |
| abstract_inverted_index.for | 130, 188, 226, 243 |
| abstract_inverted_index.key | 128 |
| abstract_inverted_index.low | 19 |
| abstract_inverted_index.may | 210 |
| abstract_inverted_index.not | 195 |
| abstract_inverted_index.now | 124 |
| abstract_inverted_index.the | 113, 120, 131, 161, 167, 171, 198, 201, 215 |
| abstract_inverted_index.via | 94 |
| abstract_inverted_index.Many | 48 |
| abstract_inverted_index.Now, | 154 |
| abstract_inverted_index.PRS. | 135 |
| abstract_inverted_index.This | 232 |
| abstract_inverted_index.also | 205 |
| abstract_inverted_index.been | 147 |
| abstract_inverted_index.data | 26, 43, 90, 118, 176, 245 |
| abstract_inverted_index.deal | 106 |
| abstract_inverted_index.far, | 146 |
| abstract_inverted_index.from | 10, 55, 71 |
| abstract_inverted_index.has, | 144 |
| abstract_inverted_index.into | 59 |
| abstract_inverted_index.loss | 168, 186 |
| abstract_inverted_index.mean | 199 |
| abstract_inverted_index.more | 157, 212 |
| abstract_inverted_index.most | 138 |
| abstract_inverted_index.only | 196 |
| abstract_inverted_index.risk | 2, 216 |
| abstract_inverted_index.such | 178 |
| abstract_inverted_index.that | 37, 83, 209 |
| abstract_inverted_index.this | 76, 141, 244 |
| abstract_inverted_index.with | 18, 107 |
| abstract_inverted_index.work | 233 |
| abstract_inverted_index.(PRS) | 4 |
| abstract_inverted_index.allow | 65, 191 |
| abstract_inverted_index.count | 182 |
| abstract_inverted_index.data. | 74, 110, 183 |
| abstract_inverted_index.focus | 194 |
| abstract_inverted_index.large | 46 |
| abstract_inverted_index.model | 239 |
| abstract_inverted_index.other | 207 |
| abstract_inverted_index.scope | 122 |
| abstract_inverted_index.tools | 50 |
| abstract_inverted_index.trait | 9 |
| abstract_inverted_index.type. | 246 |
| abstract_inverted_index.(large | 44 |
| abstract_inverted_index.Having | 111 |
| abstract_inverted_index.Recent | 63 |
| abstract_inverted_index.across | 237 |
| abstract_inverted_index.binary | 152 |
| abstract_inverted_index.cohort | 109 |
| abstract_inverted_index.common | 15 |
| abstract_inverted_index.effect | 22 |
| abstract_inverted_index.median | 228 |
| abstract_inverted_index.medium | 21 |
| abstract_inverted_index.score. | 62 |
| abstract_inverted_index.scores | 3 |
| abstract_inverted_index.single | 61 |
| abstract_inverted_index.sizes. | 23 |
| abstract_inverted_index.solved | 112 |
| abstract_inverted_index.Similar | 136 |
| abstract_inverted_index.applied | 40 |
| abstract_inverted_index.applies | 84 |
| abstract_inverted_index.aspects | 208 |
| abstract_inverted_index.classes | 240 |
| abstract_inverted_index.crucial | 33 |
| abstract_inverted_index.develop | 35 |
| abstract_inverted_index.effects | 70 |
| abstract_inverted_index.extends | 170 |
| abstract_inverted_index.fitting | 236 |
| abstract_inverted_index.further | 175 |
| abstract_inverted_index.genetic | 11, 16 |
| abstract_inverted_index.helpful | 213 |
| abstract_inverted_index.methods | 36, 139 |
| abstract_inverted_index.models. | 97 |
| abstract_inverted_index.nature, | 30 |
| abstract_inverted_index.predict | 7 |
| abstract_inverted_index.relying | 13 |
| abstract_inverted_index.studies | 58 |
| abstract_inverted_index.summary | 53 |
| abstract_inverted_index.traits. | 153 |
| abstract_inverted_index.variant | 69 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Adapting | 166 |
| abstract_inverted_index.advanced | 158 |
| abstract_inverted_index.batches, | 103 |
| abstract_inverted_index.boosting | 86 |
| abstract_inverted_index.clinical | 132 |
| abstract_inverted_index.context, | 77, 142 |
| abstract_inverted_index.enhances | 234 |
| abstract_inverted_index.estimate | 92 |
| abstract_inverted_index.example, | 227 |
| abstract_inverted_index.function | 169 |
| abstract_inverted_index.genotype | 25, 73, 89 |
| abstract_inverted_index.modeling | 67 |
| abstract_inverted_index.multiple | 238 |
| abstract_inverted_index.outcome. | 165 |
| abstract_inverted_index.outcomes | 190 |
| abstract_inverted_index.patients | 220 |
| abstract_inverted_index.quantify | 223 |
| abstract_inverted_index.quantile | 230 |
| abstract_inverted_index.snpboost | 104, 143, 172 |
| abstract_inverted_index.variants | 17, 100 |
| abstract_inverted_index.Polygenic | 1 |
| abstract_inverted_index.aggregate | 51 |
| abstract_inverted_index.algorithm | 82 |
| abstract_inverted_index.framework | 173 |
| abstract_inverted_index.functions | 187 |
| abstract_inverted_index.obstacles | 115 |
| abstract_inverted_index.snpboost, | 80 |
| abstract_inverted_index.technical | 114 |
| abstract_inverted_index.continuous | 189 |
| abstract_inverted_index.individual | 219 |
| abstract_inverted_index.introduced | 79 |
| abstract_inverted_index.objectives | 129 |
| abstract_inverted_index.particular | 162 |
| abstract_inverted_index.prediction | 224 |
| abstract_inverted_index.previously | 241 |
| abstract_inverted_index.processing | 99 |
| abstract_inverted_index.regression | 96 |
| abstract_inverted_index.restricted | 148 |
| abstract_inverted_index.situations | 177 |
| abstract_inverted_index.statistics | 54 |
| abstract_inverted_index.unfeasible | 242 |
| abstract_inverted_index.univariate | 52 |
| abstract_inverted_index.alternative | 185 |
| abstract_inverted_index.application | 133 |
| abstract_inverted_index.association | 57 |
| abstract_inverted_index.conditional | 202 |
| abstract_inverted_index.incorporate | 156 |
| abstract_inverted_index.iteratively | 101 |
| abstract_inverted_index.regression. | 231 |
| abstract_inverted_index.statistical | 85 |
| abstract_inverted_index.Furthermore, | 184 |
| abstract_inverted_index.advancements | 64 |
| abstract_inverted_index.distribution | 203 |
| abstract_inverted_index.information, | 12 |
| abstract_inverted_index.quantitative | 150 |
| abstract_inverted_index.simultaneous | 66 |
| abstract_inverted_index.uncertainty, | 225 |
| abstract_inverted_index.genome‐wide | 56 |
| abstract_inverted_index.large‐scale | 42, 108 |
| abstract_inverted_index.multivariable | 95 |
| abstract_inverted_index.methodological | 121 |
| abstract_inverted_index.stratification | 217 |
| abstract_inverted_index.dimensionality, | 119 |
| abstract_inverted_index.time‐to‐event | 180 |
| abstract_inverted_index.high‐dimensional | 28 |
| abstract_inverted_index.individual‐level | 72, 88 |
| abstract_inverted_index.broadened—focusing | 126 |
| abstract_inverted_index.alternatives—targeted | 159 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.24095547 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |