Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1090/memo/1242
A set $V$ in a domain $U$ in $\mathbb{C}^n$ has the {\em norm-preserving extension property} if every bounded holomorphic function on $V$ has a holomorphic extension to $U$ with the same supremum norm. We prove that an algebraic subset of the {\em symmetrized bidisc} \[ G := \{(z+w,zw):|z|<1, |w| < 1 \} \] has the norm-preserving extension property if and only if it is either a singleton, $G$ itself, a complex geodesic of $G$, or the union of the set $\{(2z,z^2): |z|<1\}$ and a complex geodesic of degree $1$ in $G$. We also prove that the complex geodesics in $G$ coincide with the nontrivial holomorphic retracts in $G$. Thus, in contrast to the case of the ball or the bidisc, there are sets in $G$ which have the norm-preserving extension property but are not holomorphic retracts of $G$. In the course of the proof we obtain a detailed classification of the complex geodesics in $G$ modulo automorphisms of $G$. We give applications to von Neumann-type inequalities for $Γ$-contractions (that is, commuting pairs of operators for which the closure of $G$ is a spectral set) and for symmetric functions of commuting pairs of contractive operators. We find three other domains that contain sets with the norm-preserving extension property which are not retracts: they are the spectral ball of $2\times 2$ matrices, the tetrablock and the pentablock. We also identify the subsets of the bidisc which have the norm-preserving extension property for symmetric functions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1090/memo/1242
- OA Status
- green
- Cited By
- 5
- References
- 7
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2301999945
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2301999945Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1090/memo/1242Digital Object Identifier
- Title
-
Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized BidiscWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-02-22Full publication date if available
- Authors
-
Jim Agler, Zinaida A. Lykova, N. J. YoungList of authors in order
- Landing page
-
https://doi.org/10.1090/memo/1242Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1603.04030Direct OA link when available
- Concepts
-
Mathematics, Holomorphic function, Uniform norm, Norm (philosophy), Geodesic, Pure mathematics, Bounded function, Ball (mathematics), Combinatorics, Mathematical analysis, Law, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2018: 2, 2017: 3Per-year citation counts (last 5 years)
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2301999945 |
|---|---|
| doi | https://doi.org/10.1090/memo/1242 |
| ids.doi | https://doi.org/10.1090/memo/1242 |
| ids.mag | 2301999945 |
| ids.openalex | https://openalex.org/W2301999945 |
| fwci | |
| type | preprint |
| title | Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc |
| biblio.issue | 1242 |
| biblio.volume | 258 |
| biblio.last_page | 0 |
| biblio.first_page | 0 |
| topics[0].id | https://openalex.org/T10884 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2604 |
| topics[0].subfield.display_name | Applied Mathematics |
| topics[0].display_name | Holomorphic and Operator Theory |
| topics[1].id | https://openalex.org/T11822 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2608 |
| topics[1].subfield.display_name | Geometry and Topology |
| topics[1].display_name | Analytic and geometric function theory |
| topics[2].id | https://openalex.org/T10304 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9921000003814697 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2608 |
| topics[2].subfield.display_name | Geometry and Topology |
| topics[2].display_name | Geometric and Algebraic Topology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7904432415962219 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C204575570 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6893730163574219 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q207476 |
| concepts[1].display_name | Holomorphic function |
| concepts[2].id | https://openalex.org/C146324458 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5835287570953369 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1202673 |
| concepts[2].display_name | Uniform norm |
| concepts[3].id | https://openalex.org/C191795146 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5466923117637634 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3878446 |
| concepts[3].display_name | Norm (philosophy) |
| concepts[4].id | https://openalex.org/C165818556 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5334364175796509 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q213488 |
| concepts[4].display_name | Geodesic |
| concepts[5].id | https://openalex.org/C202444582 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5295164585113525 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[5].display_name | Pure mathematics |
| concepts[6].id | https://openalex.org/C34388435 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48375487327575684 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2267362 |
| concepts[6].display_name | Bounded function |
| concepts[7].id | https://openalex.org/C122041747 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43395569920539856 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q838611 |
| concepts[7].display_name | Ball (mathematics) |
| concepts[8].id | https://openalex.org/C114614502 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2737491726875305 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[8].display_name | Combinatorics |
| concepts[9].id | https://openalex.org/C134306372 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1836778223514557 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[9].display_name | Mathematical analysis |
| concepts[10].id | https://openalex.org/C199539241 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[10].display_name | Law |
| concepts[11].id | https://openalex.org/C17744445 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[11].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.7904432415962219 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/holomorphic-function |
| keywords[1].score | 0.6893730163574219 |
| keywords[1].display_name | Holomorphic function |
| keywords[2].id | https://openalex.org/keywords/uniform-norm |
| keywords[2].score | 0.5835287570953369 |
| keywords[2].display_name | Uniform norm |
| keywords[3].id | https://openalex.org/keywords/norm |
| keywords[3].score | 0.5466923117637634 |
| keywords[3].display_name | Norm (philosophy) |
| keywords[4].id | https://openalex.org/keywords/geodesic |
| keywords[4].score | 0.5334364175796509 |
| keywords[4].display_name | Geodesic |
| keywords[5].id | https://openalex.org/keywords/pure-mathematics |
| keywords[5].score | 0.5295164585113525 |
| keywords[5].display_name | Pure mathematics |
| keywords[6].id | https://openalex.org/keywords/bounded-function |
| keywords[6].score | 0.48375487327575684 |
| keywords[6].display_name | Bounded function |
| keywords[7].id | https://openalex.org/keywords/ball |
| keywords[7].score | 0.43395569920539856 |
| keywords[7].display_name | Ball (mathematics) |
| keywords[8].id | https://openalex.org/keywords/combinatorics |
| keywords[8].score | 0.2737491726875305 |
| keywords[8].display_name | Combinatorics |
| keywords[9].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[9].score | 0.1836778223514557 |
| keywords[9].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1090/memo/1242 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S104585175 |
| locations[0].source.issn | 0065-9266, 1947-6221 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0065-9266 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Memoirs of the American Mathematical Society |
| locations[0].source.host_organization | https://openalex.org/P4310315719 |
| locations[0].source.host_organization_name | American Mathematical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315719 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Memoirs of the American Mathematical Society |
| locations[0].landing_page_url | https://doi.org/10.1090/memo/1242 |
| locations[1].id | pmh:oai:eprints.whiterose.ac.uk:104054 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400854 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | White Rose Research Online (University of Leeds, The University of Sheffield, University of York) |
| locations[1].source.host_organization | https://openalex.org/I2800616092 |
| locations[1].source.host_organization_name | White Rose University Consortium |
| locations[1].source.host_organization_lineage | https://openalex.org/I2800616092 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:arXiv.org:1603.04030 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/1603.04030 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/1603.04030 |
| locations[3].id | mag:2301999945 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | arXiv (Cornell University) |
| locations[3].landing_page_url | https://arxiv.org/pdf/1603.04030.pdf |
| locations[4].id | pmh:oai:aleph.bib-bvb.de:BVB01-031266827 |
| locations[4].is_oa | False |
| locations[4].source | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | text |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://bvbr.bib-bvb.de:443/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=031266827&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
| locations[5].id | pmh:oai:cds.cern.ch:2685672 |
| locations[5].is_oa | False |
| locations[5].source.id | https://openalex.org/S4306402194 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | CERN Document Server (European Organization for Nuclear Research) |
| locations[5].source.host_organization | https://openalex.org/I67311998 |
| locations[5].source.host_organization_name | European Organization for Nuclear Research |
| locations[5].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[5].license | |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | |
| locations[5].license_id | |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | http://cds.cern.ch/record/2685672 |
| locations[6].id | doi:10.48550/arxiv.1603.04030 |
| locations[6].is_oa | True |
| locations[6].source.id | https://openalex.org/S4306400194 |
| locations[6].source.issn | |
| locations[6].source.type | repository |
| locations[6].source.is_oa | True |
| locations[6].source.issn_l | |
| locations[6].source.is_core | False |
| locations[6].source.is_in_doaj | False |
| locations[6].source.display_name | arXiv (Cornell University) |
| locations[6].source.host_organization | https://openalex.org/I205783295 |
| locations[6].source.host_organization_name | Cornell University |
| locations[6].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[6].license | |
| locations[6].pdf_url | |
| locations[6].version | |
| locations[6].raw_type | article |
| locations[6].license_id | |
| locations[6].is_accepted | False |
| locations[6].is_published | |
| locations[6].raw_source_name | |
| locations[6].landing_page_url | https://doi.org/10.48550/arxiv.1603.04030 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5049940095 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jim Agler |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics, University of California at San Diego, California 92103 |
| authorships[0].institutions[0].id | https://openalex.org/I36258959 |
| authorships[0].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, San Diego |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jim Agler |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics, University of California at San Diego, California 92103 |
| authorships[1].author.id | https://openalex.org/A5029152804 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5488-9840 |
| authorships[1].author.display_name | Zinaida A. Lykova |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I84884186 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematics & Statistics, Newcastle University, Newcastle Upon Tyne, NE1 7RU United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I84884186 |
| authorships[1].institutions[0].ror | https://ror.org/01kj2bm70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I84884186 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Newcastle University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zinaida Lykova |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mathematics & Statistics, Newcastle University, Newcastle Upon Tyne, NE1 7RU United Kingdom |
| authorships[2].author.id | https://openalex.org/A5103195996 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2707-1450 |
| authorships[2].author.display_name | N. J. Young |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I84884186 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom — and — School of Mathematics, Leeds University, Leeds LS2 9JT, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I84884186 |
| authorships[2].institutions[0].ror | https://ror.org/01kj2bm70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I84884186 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Newcastle University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Nicholas Young |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom — and — School of Mathematics, Leeds University, Leeds LS2 9JT, United Kingdom |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1603.04030 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10884 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2604 |
| primary_topic.subfield.display_name | Applied Mathematics |
| primary_topic.display_name | Holomorphic and Operator Theory |
| related_works | https://openalex.org/W1515824082, https://openalex.org/W1996647207, https://openalex.org/W1645195884, https://openalex.org/W2047436628, https://openalex.org/W2084299801, https://openalex.org/W2897418137, https://openalex.org/W1996105571, https://openalex.org/W2079717133, https://openalex.org/W2899703905, https://openalex.org/W1965514319, https://openalex.org/W2014403250, https://openalex.org/W3026427872, https://openalex.org/W2170866205, https://openalex.org/W1183464313, https://openalex.org/W1972697194, https://openalex.org/W1978129477, https://openalex.org/W2078929916, https://openalex.org/W2137219376, https://openalex.org/W2990700199, https://openalex.org/W2001309777 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2018 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2017 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 7 |
| best_oa_location.id | pmh:oai:arXiv.org:1603.04030 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1603.04030 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1603.04030 |
| primary_location.id | doi:10.1090/memo/1242 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S104585175 |
| primary_location.source.issn | 0065-9266, 1947-6221 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0065-9266 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Memoirs of the American Mathematical Society |
| primary_location.source.host_organization | https://openalex.org/P4310315719 |
| primary_location.source.host_organization_name | American Mathematical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315719 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Memoirs of the American Mathematical Society |
| primary_location.landing_page_url | https://doi.org/10.1090/memo/1242 |
| publication_date | 2019-02-22 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2102023196, https://openalex.org/W1512980879, https://openalex.org/W2949455697, https://openalex.org/W1555554612, https://openalex.org/W1985113312, https://openalex.org/W2082258142, https://openalex.org/W2095134199 |
| referenced_works_count | 7 |
| abstract_inverted_index.1 | 50 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.G | 45 |
| abstract_inverted_index.a | 4, 23, 65, 69, 83, 146, 181 |
| abstract_inverted_index.2$ | 218 |
| abstract_inverted_index.:= | 46 |
| abstract_inverted_index.In | 138 |
| abstract_inverted_index.We | 33, 91, 159, 194, 225 |
| abstract_inverted_index.\[ | 44 |
| abstract_inverted_index.\] | 52 |
| abstract_inverted_index.\} | 51 |
| abstract_inverted_index.an | 36 |
| abstract_inverted_index.if | 15, 58, 61 |
| abstract_inverted_index.in | 3, 7, 89, 98, 106, 109, 123, 153 |
| abstract_inverted_index.is | 63, 180 |
| abstract_inverted_index.it | 62 |
| abstract_inverted_index.of | 39, 72, 77, 86, 114, 136, 141, 149, 157, 172, 178, 188, 191, 216, 230 |
| abstract_inverted_index.on | 20 |
| abstract_inverted_index.or | 74, 117 |
| abstract_inverted_index.to | 26, 111, 162 |
| abstract_inverted_index.we | 144 |
| abstract_inverted_index.$1$ | 88 |
| abstract_inverted_index.$G$ | 67, 99, 124, 154, 179 |
| abstract_inverted_index.$U$ | 6, 27 |
| abstract_inverted_index.$V$ | 2, 21 |
| abstract_inverted_index.and | 59, 82, 184, 222 |
| abstract_inverted_index.are | 121, 132, 208, 212 |
| abstract_inverted_index.but | 131 |
| abstract_inverted_index.for | 166, 174, 185, 239 |
| abstract_inverted_index.has | 9, 22, 53 |
| abstract_inverted_index.is, | 169 |
| abstract_inverted_index.not | 133, 209 |
| abstract_inverted_index.set | 1, 79 |
| abstract_inverted_index.the | 10, 29, 40, 54, 75, 78, 95, 102, 112, 115, 118, 127, 139, 142, 150, 176, 203, 213, 220, 223, 228, 231, 235 |
| abstract_inverted_index.von | 163 |
| abstract_inverted_index.|w| | 48 |
| abstract_inverted_index.$G$, | 73 |
| abstract_inverted_index.$G$. | 90, 107, 137, 158 |
| abstract_inverted_index.< | 49 |
| abstract_inverted_index.also | 92, 226 |
| abstract_inverted_index.ball | 116, 215 |
| abstract_inverted_index.case | 113 |
| abstract_inverted_index.find | 195 |
| abstract_inverted_index.give | 160 |
| abstract_inverted_index.have | 126, 234 |
| abstract_inverted_index.only | 60 |
| abstract_inverted_index.same | 30 |
| abstract_inverted_index.set) | 183 |
| abstract_inverted_index.sets | 122, 201 |
| abstract_inverted_index.that | 35, 94, 199 |
| abstract_inverted_index.they | 211 |
| abstract_inverted_index.with | 28, 101, 202 |
| abstract_inverted_index.{\em | 11, 41 |
| abstract_inverted_index.(that | 168 |
| abstract_inverted_index.Thus, | 108 |
| abstract_inverted_index.every | 16 |
| abstract_inverted_index.norm. | 32 |
| abstract_inverted_index.other | 197 |
| abstract_inverted_index.pairs | 171, 190 |
| abstract_inverted_index.proof | 143 |
| abstract_inverted_index.prove | 34, 93 |
| abstract_inverted_index.there | 120 |
| abstract_inverted_index.three | 196 |
| abstract_inverted_index.union | 76 |
| abstract_inverted_index.which | 125, 175, 207, 233 |
| abstract_inverted_index.bidisc | 232 |
| abstract_inverted_index.course | 140 |
| abstract_inverted_index.degree | 87 |
| abstract_inverted_index.domain | 5 |
| abstract_inverted_index.either | 64 |
| abstract_inverted_index.modulo | 155 |
| abstract_inverted_index.obtain | 145 |
| abstract_inverted_index.subset | 38 |
| abstract_inverted_index.bidisc, | 119 |
| abstract_inverted_index.bidisc} | 43 |
| abstract_inverted_index.bounded | 17 |
| abstract_inverted_index.closure | 177 |
| abstract_inverted_index.complex | 70, 84, 96, 151 |
| abstract_inverted_index.contain | 200 |
| abstract_inverted_index.domains | 198 |
| abstract_inverted_index.itself, | 68 |
| abstract_inverted_index.subsets | 229 |
| abstract_inverted_index.$2\times | 217 |
| abstract_inverted_index.coincide | 100 |
| abstract_inverted_index.contrast | 110 |
| abstract_inverted_index.detailed | 147 |
| abstract_inverted_index.function | 19 |
| abstract_inverted_index.geodesic | 71, 85 |
| abstract_inverted_index.identify | 227 |
| abstract_inverted_index.property | 57, 130, 206, 238 |
| abstract_inverted_index.retracts | 105, 135 |
| abstract_inverted_index.spectral | 182, 214 |
| abstract_inverted_index.supremum | 31 |
| abstract_inverted_index.algebraic | 37 |
| abstract_inverted_index.commuting | 170, 189 |
| abstract_inverted_index.extension | 13, 25, 56, 129, 205, 237 |
| abstract_inverted_index.functions | 187 |
| abstract_inverted_index.geodesics | 97, 152 |
| abstract_inverted_index.matrices, | 219 |
| abstract_inverted_index.operators | 173 |
| abstract_inverted_index.property} | 14 |
| abstract_inverted_index.retracts: | 210 |
| abstract_inverted_index.symmetric | 186, 240 |
| abstract_inverted_index.functions. | 241 |
| abstract_inverted_index.nontrivial | 103 |
| abstract_inverted_index.operators. | 193 |
| abstract_inverted_index.singleton, | 66 |
| abstract_inverted_index.tetrablock | 221 |
| abstract_inverted_index.contractive | 192 |
| abstract_inverted_index.holomorphic | 18, 24, 104, 134 |
| abstract_inverted_index.pentablock. | 224 |
| abstract_inverted_index.symmetrized | 42 |
| abstract_inverted_index.|z|<1\}$ | 81 |
| abstract_inverted_index.$\{(2z,z^2): | 80 |
| abstract_inverted_index.Neumann-type | 164 |
| abstract_inverted_index.applications | 161 |
| abstract_inverted_index.inequalities | 165 |
| abstract_inverted_index.automorphisms | 156 |
| abstract_inverted_index.$\mathbb{C}^n$ | 8 |
| abstract_inverted_index.classification | 148 |
| abstract_inverted_index.norm-preserving | 12, 55, 128, 204, 236 |
| abstract_inverted_index.$Γ$-contractions | 167 |
| abstract_inverted_index.\{(z+w,zw):|z|<1, | 47 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.00301959 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |