Geographically weighted linear combination test for gene-set analysis of a continuous spatial phenotype as applied to intratumor heterogeneity Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3389/fcell.2023.1065586
Background: The impact of gene-sets on a spatial phenotype is not necessarily uniform across different locations of cancer tissue. This study introduces a computational platform, GWLCT, for combining gene set analysis with spatial data modeling to provide a new statistical test for location-specific association of phenotypes and molecular pathways in spatial single-cell RNA-seq data collected from an input tumor sample. Methods: The main advantage of GWLCT consists of an analysis beyond global significance, allowing the association between the gene-set and the phenotype to vary across the tumor space. At each location, the most significant linear combination is found using a geographically weighted shrunken covariance matrix and kernel function. Whether a fixed or adaptive bandwidth is determined based on a cross-validation cross procedure. Our proposed method is compared to the global version of linear combination test (LCT), bulk and random-forest based gene-set enrichment analyses using data created by the Visium Spatial Gene Expression technique on an invasive breast cancer tissue sample, as well as 144 different simulation scenarios. Results: In an illustrative example, the new geographically weighted linear combination test, GWLCT, identifies the cancer hallmark gene-sets that are significantly associated at each location with the five spatially continuous phenotypic contexts in the tumors defined by different well-known markers of cancer-associated fibroblasts. Scan statistics revealed clustering in the number of significant gene-sets. A spatial heatmap of combined significance over all selected gene-sets is also produced. Extensive simulation studies demonstrate that our proposed approach outperforms other methods in the considered scenarios, especially when the spatial association increases. Conclusion: Our proposed approach considers the spatial covariance of gene expression to detect the most significant gene-sets affecting a continuous phenotype. It reveals spatially detailed information in tissue space and can thus play a key role in understanding the contextual heterogeneity of cancer cells.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fcell.2023.1065586
- OA Status
- gold
- Cited By
- 2
- References
- 103
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4323667862
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4323667862Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fcell.2023.1065586Digital Object Identifier
- Title
-
Geographically weighted linear combination test for gene-set analysis of a continuous spatial phenotype as applied to intratumor heterogeneityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-09Full publication date if available
- Authors
-
Payam Amini, Morteza Hajihosseini, Saumyadipta Pyne, Irina DinuList of authors in order
- Landing page
-
https://doi.org/10.3389/fcell.2023.1065586Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/fcell.2023.1065586Direct OA link when available
- Concepts
-
Cluster analysis, Computational biology, Statistical hypothesis testing, Linear model, Set (abstract data type), Phenotype, Spatial analysis, Computer science, Biology, Data mining, Gene, Mathematics, Genetics, Statistics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
103Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4323667862 |
|---|---|
| doi | https://doi.org/10.3389/fcell.2023.1065586 |
| ids.doi | https://doi.org/10.3389/fcell.2023.1065586 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36998245 |
| ids.openalex | https://openalex.org/W4323667862 |
| fwci | 0.37134082 |
| type | article |
| title | Geographically weighted linear combination test for gene-set analysis of a continuous spatial phenotype as applied to intratumor heterogeneity |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 1065586 |
| biblio.first_page | 1065586 |
| grants[0].funder | https://openalex.org/F4320322675 |
| grants[0].award_id | |
| grants[0].funder_display_name | Mitacs |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9905999898910522 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10885 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9768999814987183 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene expression and cancer classification |
| topics[2].id | https://openalex.org/T10136 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9714000225067139 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Inference |
| funders[0].id | https://openalex.org/F4320322675 |
| funders[0].ror | https://ror.org/00cjrc276 |
| funders[0].display_name | Mitacs |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.547623336315155 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C70721500 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5277791023254395 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[1].display_name | Computational biology |
| concepts[2].id | https://openalex.org/C87007009 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4531134366989136 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210832 |
| concepts[2].display_name | Statistical hypothesis testing |
| concepts[3].id | https://openalex.org/C163175372 |
| concepts[3].level | 2 |
| concepts[3].score | 0.44969093799591064 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[3].display_name | Linear model |
| concepts[4].id | https://openalex.org/C177264268 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44441455602645874 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[4].display_name | Set (abstract data type) |
| concepts[5].id | https://openalex.org/C127716648 |
| concepts[5].level | 3 |
| concepts[5].score | 0.42141789197921753 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q104053 |
| concepts[5].display_name | Phenotype |
| concepts[6].id | https://openalex.org/C159620131 |
| concepts[6].level | 2 |
| concepts[6].score | 0.420918732881546 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[6].display_name | Spatial analysis |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.40375879406929016 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4035099446773529 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35008302330970764 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3463538885116577 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3198333978652954 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C54355233 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3088070750236511 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[12].display_name | Genetics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.28162437677383423 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.547623336315155 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/computational-biology |
| keywords[1].score | 0.5277791023254395 |
| keywords[1].display_name | Computational biology |
| keywords[2].id | https://openalex.org/keywords/statistical-hypothesis-testing |
| keywords[2].score | 0.4531134366989136 |
| keywords[2].display_name | Statistical hypothesis testing |
| keywords[3].id | https://openalex.org/keywords/linear-model |
| keywords[3].score | 0.44969093799591064 |
| keywords[3].display_name | Linear model |
| keywords[4].id | https://openalex.org/keywords/set |
| keywords[4].score | 0.44441455602645874 |
| keywords[4].display_name | Set (abstract data type) |
| keywords[5].id | https://openalex.org/keywords/phenotype |
| keywords[5].score | 0.42141789197921753 |
| keywords[5].display_name | Phenotype |
| keywords[6].id | https://openalex.org/keywords/spatial-analysis |
| keywords[6].score | 0.420918732881546 |
| keywords[6].display_name | Spatial analysis |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.40375879406929016 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.4035099446773529 |
| keywords[8].display_name | Biology |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.35008302330970764 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/gene |
| keywords[10].score | 0.3463538885116577 |
| keywords[10].display_name | Gene |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.3198333978652954 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/genetics |
| keywords[12].score | 0.3088070750236511 |
| keywords[12].display_name | Genetics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.28162437677383423 |
| keywords[13].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.3389/fcell.2023.1065586 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2596924766 |
| locations[0].source.issn | 2296-634X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2296-634X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Cell and Developmental Biology |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Cell and Developmental Biology |
| locations[0].landing_page_url | https://doi.org/10.3389/fcell.2023.1065586 |
| locations[1].id | pmid:36998245 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in cell and developmental biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36998245 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10044624 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10044624/pdf/fcell-11-1065586.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Front Cell Dev Biol |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10044624 |
| locations[3].id | pmh:oai:doaj.org/article:91a4459eb6f34668a0ab3d20d9f6e82f |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].source.host_organization_lineage | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Frontiers in Cell and Developmental Biology, Vol 11 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/91a4459eb6f34668a0ab3d20d9f6e82f |
| locations[4].id | pmh:oai:eprints.keele.ac.uk:12161 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306402149 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Keele Research Repository (Keele University) |
| locations[4].source.host_organization | https://openalex.org/I56007636 |
| locations[4].source.host_organization_name | Keele University |
| locations[4].source.host_organization_lineage | https://openalex.org/I56007636 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Article |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://eprints.keele.ac.uk/id/eprint/12161/1/Geographically%20weighted%20linear%20combination%20test%20for%20gene-set%20analysis%20of%20a%20continuous%20spatial%20phenotype%20as%20applied%20to%20intrat.pdf |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5071595030 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8675-0045 |
| authorships[0].author.display_name | Payam Amini |
| authorships[0].countries | GB, IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161106909 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Iran |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I56007636 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Medicine, Keele University, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I56007636 |
| authorships[0].institutions[0].ror | https://ror.org/00340yn33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I56007636 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Keele University |
| authorships[0].institutions[1].id | https://openalex.org/I161106909 |
| authorships[0].institutions[1].ror | https://ror.org/03w04rv71 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I161106909 |
| authorships[0].institutions[1].country_code | IR |
| authorships[0].institutions[1].display_name | Iran University of Medical Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Payam Amini |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Iran, School of Medicine, Keele University, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5048315535 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3303-5395 |
| authorships[1].author.display_name | Morteza Hajihosseini |
| authorships[1].countries | CA, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I154425047 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Public Health, University of Alberta, Canada |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210137306 |
| authorships[1].affiliations[1].raw_affiliation_string | Stanford Department of Urology, Center for Academic Medicine, United States |
| authorships[1].institutions[0].id | https://openalex.org/I154425047 |
| authorships[1].institutions[0].ror | https://ror.org/0160cpw27 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I154425047 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Alberta |
| authorships[1].institutions[1].id | https://openalex.org/I4210137306 |
| authorships[1].institutions[1].ror | https://ror.org/03mtd9a03 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210137306, https://openalex.org/I97018004 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Stanford Medicine |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Morteza Hajihosseini |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Public Health, University of Alberta, Canada, Stanford Department of Urology, Center for Academic Medicine, United States |
| authorships[2].author.id | https://openalex.org/A5044355098 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3470-2345 |
| authorships[2].author.display_name | Saumyadipta Pyne |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I154570441 |
| authorships[2].affiliations[0].raw_affiliation_string | University of California, Santa Barbara, United States |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I2802948906 |
| authorships[2].affiliations[1].raw_affiliation_string | Health Analytics Network, United States |
| authorships[2].institutions[0].id | https://openalex.org/I2802948906 |
| authorships[2].institutions[0].ror | https://ror.org/03nzj6y61 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I2802948906 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Health Net |
| authorships[2].institutions[1].id | https://openalex.org/I154570441 |
| authorships[2].institutions[1].ror | https://ror.org/02t274463 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I154570441 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | University of California, Santa Barbara |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Saumyadipta Pyne |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Health Analytics Network, United States, University of California, Santa Barbara, United States |
| authorships[3].author.id | https://openalex.org/A5002751456 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6925-623X |
| authorships[3].author.display_name | Irina Dinu |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I154425047 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Public Health, University of Alberta, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I154425047 |
| authorships[3].institutions[0].ror | https://ror.org/0160cpw27 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I154425047 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of Alberta |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Irina Dinu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Public Health, University of Alberta, Canada |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/fcell.2023.1065586 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Geographically weighted linear combination test for gene-set analysis of a continuous spatial phenotype as applied to intratumor heterogeneity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9905999898910522 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W4298130764, https://openalex.org/W2804364458, https://openalex.org/W2132641928, https://openalex.org/W4310225030, https://openalex.org/W2090259340, https://openalex.org/W1926736923, https://openalex.org/W2158836806, https://openalex.org/W2393816671, https://openalex.org/W2083665254, https://openalex.org/W2942177010 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3389/fcell.2023.1065586 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2596924766 |
| best_oa_location.source.issn | 2296-634X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2296-634X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Cell and Developmental Biology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Cell and Developmental Biology |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fcell.2023.1065586 |
| primary_location.id | doi:10.3389/fcell.2023.1065586 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2596924766 |
| primary_location.source.issn | 2296-634X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2296-634X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Cell and Developmental Biology |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Cell and Developmental Biology |
| primary_location.landing_page_url | https://doi.org/10.3389/fcell.2023.1065586 |
| publication_date | 2023-03-09 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2794478094, https://openalex.org/W2077446789, https://openalex.org/W3205213119, https://openalex.org/W2138974799, https://openalex.org/W2166672922, https://openalex.org/W2529550497, https://openalex.org/W2047120335, https://openalex.org/W2109663830, https://openalex.org/W2901515128, https://openalex.org/W2119594835, https://openalex.org/W2952383043, https://openalex.org/W2051020739, https://openalex.org/W2786031287, https://openalex.org/W2028915020, https://openalex.org/W3028489281, https://openalex.org/W2159835316, https://openalex.org/W2053264599, https://openalex.org/W2986162201, https://openalex.org/W3138840859, https://openalex.org/W2558473966, https://openalex.org/W2020859582, https://openalex.org/W2999583889, https://openalex.org/W2951222857, https://openalex.org/W2923300855, https://openalex.org/W2737272162, https://openalex.org/W2747207142, https://openalex.org/W2557069473, https://openalex.org/W3037856367, https://openalex.org/W2347175105, https://openalex.org/W1663251599, https://openalex.org/W2150575159, https://openalex.org/W2118069309, https://openalex.org/W4307373120, https://openalex.org/W4206662285, https://openalex.org/W2117692326, https://openalex.org/W2015852625, https://openalex.org/W2964097765, https://openalex.org/W2165786425, https://openalex.org/W2609243345, https://openalex.org/W2602050433, https://openalex.org/W2035252444, https://openalex.org/W2751842241, https://openalex.org/W2512899508, https://openalex.org/W2995791792, https://openalex.org/W2185467239, https://openalex.org/W2138133187, https://openalex.org/W2865352686, https://openalex.org/W2088580309, https://openalex.org/W2164327622, https://openalex.org/W2801303687, https://openalex.org/W1906698094, https://openalex.org/W2151013106, https://openalex.org/W3092847082, https://openalex.org/W1790978987, https://openalex.org/W3195237310, https://openalex.org/W2600453489, https://openalex.org/W2010457001, https://openalex.org/W2168901348, https://openalex.org/W3027483951, https://openalex.org/W3185389132, https://openalex.org/W3015646919, https://openalex.org/W2527375200, https://openalex.org/W2586629973, https://openalex.org/W2406991867, https://openalex.org/W2894625640, https://openalex.org/W2590390825, https://openalex.org/W2282743468, https://openalex.org/W3108044685, https://openalex.org/W2088110734, https://openalex.org/W2030017878, https://openalex.org/W2953608142, https://openalex.org/W2007873570, https://openalex.org/W2089956125, https://openalex.org/W3134165232, https://openalex.org/W2771542157, https://openalex.org/W2795331645, https://openalex.org/W2901741449, https://openalex.org/W2085234652, https://openalex.org/W2533012945, https://openalex.org/W2190528488, https://openalex.org/W2991157178, https://openalex.org/W2796538159, https://openalex.org/W2471536144, https://openalex.org/W2785291766, https://openalex.org/W2130410032, https://openalex.org/W3158326913, https://openalex.org/W3044491039, https://openalex.org/W4281286057, https://openalex.org/W3033148046, https://openalex.org/W2889453805, https://openalex.org/W2113958470, https://openalex.org/W2079292007, https://openalex.org/W2206969062, https://openalex.org/W2261307736, https://openalex.org/W2809368942, https://openalex.org/W2064828432, https://openalex.org/W145025474, https://openalex.org/W3098534230, https://openalex.org/W1526705543, https://openalex.org/W2038268416, https://openalex.org/W4210516674, https://openalex.org/W4210280122, https://openalex.org/W4225529913 |
| referenced_works_count | 103 |
| abstract_inverted_index.A | 220 |
| abstract_inverted_index.a | 6, 22, 37, 99, 109, 118, 272, 287 |
| abstract_inverted_index.At | 88 |
| abstract_inverted_index.In | 168 |
| abstract_inverted_index.It | 275 |
| abstract_inverted_index.an | 56, 68, 154, 169 |
| abstract_inverted_index.as | 160, 162 |
| abstract_inverted_index.at | 189 |
| abstract_inverted_index.by | 146, 203 |
| abstract_inverted_index.in | 49, 199, 214, 244, 280, 290 |
| abstract_inverted_index.is | 9, 96, 114, 125, 230 |
| abstract_inverted_index.of | 3, 16, 44, 64, 67, 131, 207, 217, 223, 262, 295 |
| abstract_inverted_index.on | 5, 117, 153 |
| abstract_inverted_index.or | 111 |
| abstract_inverted_index.to | 35, 82, 127, 265 |
| abstract_inverted_index.144 | 163 |
| abstract_inverted_index.Our | 122, 255 |
| abstract_inverted_index.The | 1, 61 |
| abstract_inverted_index.all | 227 |
| abstract_inverted_index.and | 46, 79, 105, 137, 283 |
| abstract_inverted_index.are | 186 |
| abstract_inverted_index.can | 284 |
| abstract_inverted_index.for | 26, 41 |
| abstract_inverted_index.key | 288 |
| abstract_inverted_index.new | 38, 173 |
| abstract_inverted_index.not | 10 |
| abstract_inverted_index.our | 238 |
| abstract_inverted_index.set | 29 |
| abstract_inverted_index.the | 74, 77, 80, 85, 91, 128, 147, 172, 181, 193, 200, 215, 245, 250, 259, 267, 292 |
| abstract_inverted_index.Gene | 150 |
| abstract_inverted_index.Scan | 210 |
| abstract_inverted_index.This | 19 |
| abstract_inverted_index.also | 231 |
| abstract_inverted_index.bulk | 136 |
| abstract_inverted_index.data | 33, 53, 144 |
| abstract_inverted_index.each | 89, 190 |
| abstract_inverted_index.five | 194 |
| abstract_inverted_index.from | 55 |
| abstract_inverted_index.gene | 28, 263 |
| abstract_inverted_index.main | 62 |
| abstract_inverted_index.most | 92, 268 |
| abstract_inverted_index.over | 226 |
| abstract_inverted_index.play | 286 |
| abstract_inverted_index.role | 289 |
| abstract_inverted_index.test | 40, 134 |
| abstract_inverted_index.that | 185, 237 |
| abstract_inverted_index.thus | 285 |
| abstract_inverted_index.vary | 83 |
| abstract_inverted_index.well | 161 |
| abstract_inverted_index.when | 249 |
| abstract_inverted_index.with | 31, 192 |
| abstract_inverted_index.GWLCT | 65 |
| abstract_inverted_index.based | 116, 139 |
| abstract_inverted_index.cross | 120 |
| abstract_inverted_index.fixed | 110 |
| abstract_inverted_index.found | 97 |
| abstract_inverted_index.input | 57 |
| abstract_inverted_index.other | 242 |
| abstract_inverted_index.space | 282 |
| abstract_inverted_index.study | 20 |
| abstract_inverted_index.test, | 178 |
| abstract_inverted_index.tumor | 58, 86 |
| abstract_inverted_index.using | 98, 143 |
| abstract_inverted_index.(LCT), | 135 |
| abstract_inverted_index.GWLCT, | 25, 179 |
| abstract_inverted_index.Visium | 148 |
| abstract_inverted_index.across | 13, 84 |
| abstract_inverted_index.beyond | 70 |
| abstract_inverted_index.breast | 156 |
| abstract_inverted_index.cancer | 17, 157, 182, 296 |
| abstract_inverted_index.cells. | 297 |
| abstract_inverted_index.detect | 266 |
| abstract_inverted_index.global | 71, 129 |
| abstract_inverted_index.impact | 2 |
| abstract_inverted_index.kernel | 106 |
| abstract_inverted_index.linear | 94, 132, 176 |
| abstract_inverted_index.matrix | 104 |
| abstract_inverted_index.method | 124 |
| abstract_inverted_index.number | 216 |
| abstract_inverted_index.space. | 87 |
| abstract_inverted_index.tissue | 158, 281 |
| abstract_inverted_index.tumors | 201 |
| abstract_inverted_index.RNA-seq | 52 |
| abstract_inverted_index.Spatial | 149 |
| abstract_inverted_index.Whether | 108 |
| abstract_inverted_index.between | 76 |
| abstract_inverted_index.created | 145 |
| abstract_inverted_index.defined | 202 |
| abstract_inverted_index.heatmap | 222 |
| abstract_inverted_index.markers | 206 |
| abstract_inverted_index.methods | 243 |
| abstract_inverted_index.provide | 36 |
| abstract_inverted_index.reveals | 276 |
| abstract_inverted_index.sample, | 159 |
| abstract_inverted_index.sample. | 59 |
| abstract_inverted_index.spatial | 7, 32, 50, 221, 251, 260 |
| abstract_inverted_index.studies | 235 |
| abstract_inverted_index.tissue. | 18 |
| abstract_inverted_index.uniform | 12 |
| abstract_inverted_index.version | 130 |
| abstract_inverted_index.Methods: | 60 |
| abstract_inverted_index.Results: | 167 |
| abstract_inverted_index.adaptive | 112 |
| abstract_inverted_index.allowing | 73 |
| abstract_inverted_index.analyses | 142 |
| abstract_inverted_index.analysis | 30, 69 |
| abstract_inverted_index.approach | 240, 257 |
| abstract_inverted_index.combined | 224 |
| abstract_inverted_index.compared | 126 |
| abstract_inverted_index.consists | 66 |
| abstract_inverted_index.contexts | 198 |
| abstract_inverted_index.detailed | 278 |
| abstract_inverted_index.example, | 171 |
| abstract_inverted_index.gene-set | 78, 140 |
| abstract_inverted_index.hallmark | 183 |
| abstract_inverted_index.invasive | 155 |
| abstract_inverted_index.location | 191 |
| abstract_inverted_index.modeling | 34 |
| abstract_inverted_index.pathways | 48 |
| abstract_inverted_index.proposed | 123, 239, 256 |
| abstract_inverted_index.revealed | 212 |
| abstract_inverted_index.selected | 228 |
| abstract_inverted_index.shrunken | 102 |
| abstract_inverted_index.weighted | 101, 175 |
| abstract_inverted_index.Extensive | 233 |
| abstract_inverted_index.advantage | 63 |
| abstract_inverted_index.affecting | 271 |
| abstract_inverted_index.bandwidth | 113 |
| abstract_inverted_index.collected | 54 |
| abstract_inverted_index.combining | 27 |
| abstract_inverted_index.considers | 258 |
| abstract_inverted_index.different | 14, 164, 204 |
| abstract_inverted_index.function. | 107 |
| abstract_inverted_index.gene-sets | 4, 184, 229, 270 |
| abstract_inverted_index.location, | 90 |
| abstract_inverted_index.locations | 15 |
| abstract_inverted_index.molecular | 47 |
| abstract_inverted_index.phenotype | 8, 81 |
| abstract_inverted_index.platform, | 24 |
| abstract_inverted_index.produced. | 232 |
| abstract_inverted_index.spatially | 195, 277 |
| abstract_inverted_index.technique | 152 |
| abstract_inverted_index.Expression | 151 |
| abstract_inverted_index.associated | 188 |
| abstract_inverted_index.clustering | 213 |
| abstract_inverted_index.considered | 246 |
| abstract_inverted_index.contextual | 293 |
| abstract_inverted_index.continuous | 196, 273 |
| abstract_inverted_index.covariance | 103, 261 |
| abstract_inverted_index.determined | 115 |
| abstract_inverted_index.enrichment | 141 |
| abstract_inverted_index.especially | 248 |
| abstract_inverted_index.expression | 264 |
| abstract_inverted_index.gene-sets. | 219 |
| abstract_inverted_index.identifies | 180 |
| abstract_inverted_index.increases. | 253 |
| abstract_inverted_index.introduces | 21 |
| abstract_inverted_index.phenotype. | 274 |
| abstract_inverted_index.phenotypes | 45 |
| abstract_inverted_index.phenotypic | 197 |
| abstract_inverted_index.procedure. | 121 |
| abstract_inverted_index.scenarios, | 247 |
| abstract_inverted_index.scenarios. | 166 |
| abstract_inverted_index.simulation | 165, 234 |
| abstract_inverted_index.statistics | 211 |
| abstract_inverted_index.well-known | 205 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.Conclusion: | 254 |
| abstract_inverted_index.association | 43, 75, 252 |
| abstract_inverted_index.combination | 95, 133, 177 |
| abstract_inverted_index.demonstrate | 236 |
| abstract_inverted_index.information | 279 |
| abstract_inverted_index.necessarily | 11 |
| abstract_inverted_index.outperforms | 241 |
| abstract_inverted_index.significant | 93, 218, 269 |
| abstract_inverted_index.single-cell | 51 |
| abstract_inverted_index.statistical | 39 |
| abstract_inverted_index.fibroblasts. | 209 |
| abstract_inverted_index.illustrative | 170 |
| abstract_inverted_index.significance | 225 |
| abstract_inverted_index.computational | 23 |
| abstract_inverted_index.heterogeneity | 294 |
| abstract_inverted_index.random-forest | 138 |
| abstract_inverted_index.significance, | 72 |
| abstract_inverted_index.significantly | 187 |
| abstract_inverted_index.understanding | 291 |
| abstract_inverted_index.geographically | 100, 174 |
| abstract_inverted_index.cross-validation | 119 |
| abstract_inverted_index.cancer-associated | 208 |
| abstract_inverted_index.location-specific | 42 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.63502365 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |