GeoMatch++: Morphology Conditioned Geometry Matching for Multi-Embodiment Grasping Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.18998
Despite recent progress on multi-finger dexterous grasping, current methods focus on single grippers and unseen objects, and even the ones that explore cross-embodiment, often fail to generalize well to unseen end-effectors. This work addresses the problem of dexterous grasping generalization to unseen end-effectors via a unified policy that learns correlation between gripper morphology and object geometry. Robot morphology contains rich information representing how joints and links connect and move with respect to each other and thus, we leverage it through attention to learn better end-effector geometry features. Our experiments show an average of 9.64% increase in grasp success rate across 3 out-of-domain end-effectors compared to previous methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.18998
- https://arxiv.org/pdf/2412.18998
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405901320
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405901320Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.18998Digital Object Identifier
- Title
-
GeoMatch++: Morphology Conditioned Geometry Matching for Multi-Embodiment GraspingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-25Full publication date if available
- Authors
-
Yan Wei, Maria Attarian, Igor GilitschenskiList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.18998Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.18998Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.18998Direct OA link when available
- Concepts
-
Morphology (biology), Matching (statistics), Geometry, Computer science, Artificial intelligence, Computer vision, Mathematics, Geology, Paleontology, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405901320 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.18998 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.18998 |
| ids.openalex | https://openalex.org/W4405901320 |
| fwci | |
| type | preprint |
| title | GeoMatch++: Morphology Conditioned Geometry Matching for Multi-Embodiment Grasping |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14339 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Processing and 3D Reconstruction |
| topics[1].id | https://openalex.org/T10719 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | 3D Shape Modeling and Analysis |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9889000058174133 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C499950583 |
| concepts[0].level | 2 |
| concepts[0].score | 0.715917706489563 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q183252 |
| concepts[0].display_name | Morphology (biology) |
| concepts[1].id | https://openalex.org/C165064840 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6062068343162537 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[1].display_name | Matching (statistics) |
| concepts[2].id | https://openalex.org/C2524010 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5982587933540344 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[2].display_name | Geometry |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4311065375804901 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3616581857204437 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3447469472885132 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.30354389548301697 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2126190960407257 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C151730666 |
| concepts[8].level | 1 |
| concepts[8].score | 0.04806143045425415 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[8].display_name | Paleontology |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/morphology |
| keywords[0].score | 0.715917706489563 |
| keywords[0].display_name | Morphology (biology) |
| keywords[1].id | https://openalex.org/keywords/matching |
| keywords[1].score | 0.6062068343162537 |
| keywords[1].display_name | Matching (statistics) |
| keywords[2].id | https://openalex.org/keywords/geometry |
| keywords[2].score | 0.5982587933540344 |
| keywords[2].display_name | Geometry |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4311065375804901 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3616581857204437 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.3447469472885132 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.30354389548301697 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.2126190960407257 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/paleontology |
| keywords[8].score | 0.04806143045425415 |
| keywords[8].display_name | Paleontology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.18998 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.18998 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.18998 |
| locations[1].id | doi:10.48550/arxiv.2412.18998 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.18998 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5007382002 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8384-6922 |
| authorships[0].author.display_name | Yan Wei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wei, Yunze |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043566305 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Maria Attarian |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Attarian, Maria |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078356081 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6426-365X |
| authorships[2].author.display_name | Igor Gilitschenski |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Gilitschenski, Igor |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.18998 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GeoMatch++: Morphology Conditioned Geometry Matching for Multi-Embodiment Grasping |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T14339 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Processing and 3D Reconstruction |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.18998 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.18998 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.18998 |
| primary_location.id | pmh:oai:arXiv.org:2412.18998 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.18998 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.18998 |
| publication_date | 2024-12-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 100 |
| abstract_inverted_index.a | 44 |
| abstract_inverted_index.an | 90 |
| abstract_inverted_index.in | 95 |
| abstract_inverted_index.it | 78 |
| abstract_inverted_index.of | 36, 92 |
| abstract_inverted_index.on | 3, 10 |
| abstract_inverted_index.to | 25, 28, 40, 71, 81, 104 |
| abstract_inverted_index.we | 76 |
| abstract_inverted_index.Our | 87 |
| abstract_inverted_index.and | 13, 16, 53, 64, 67, 74 |
| abstract_inverted_index.how | 62 |
| abstract_inverted_index.the | 18, 34 |
| abstract_inverted_index.via | 43 |
| abstract_inverted_index.This | 31 |
| abstract_inverted_index.each | 72 |
| abstract_inverted_index.even | 17 |
| abstract_inverted_index.fail | 24 |
| abstract_inverted_index.move | 68 |
| abstract_inverted_index.ones | 19 |
| abstract_inverted_index.rate | 98 |
| abstract_inverted_index.rich | 59 |
| abstract_inverted_index.show | 89 |
| abstract_inverted_index.that | 20, 47 |
| abstract_inverted_index.well | 27 |
| abstract_inverted_index.with | 69 |
| abstract_inverted_index.work | 32 |
| abstract_inverted_index.9.64% | 93 |
| abstract_inverted_index.Robot | 56 |
| abstract_inverted_index.focus | 9 |
| abstract_inverted_index.grasp | 96 |
| abstract_inverted_index.learn | 82 |
| abstract_inverted_index.links | 65 |
| abstract_inverted_index.often | 23 |
| abstract_inverted_index.other | 73 |
| abstract_inverted_index.thus, | 75 |
| abstract_inverted_index.across | 99 |
| abstract_inverted_index.better | 83 |
| abstract_inverted_index.joints | 63 |
| abstract_inverted_index.learns | 48 |
| abstract_inverted_index.object | 54 |
| abstract_inverted_index.policy | 46 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.single | 11 |
| abstract_inverted_index.unseen | 14, 29, 41 |
| abstract_inverted_index.Despite | 0 |
| abstract_inverted_index.average | 91 |
| abstract_inverted_index.between | 50 |
| abstract_inverted_index.connect | 66 |
| abstract_inverted_index.current | 7 |
| abstract_inverted_index.explore | 21 |
| abstract_inverted_index.gripper | 51 |
| abstract_inverted_index.methods | 8 |
| abstract_inverted_index.problem | 35 |
| abstract_inverted_index.respect | 70 |
| abstract_inverted_index.success | 97 |
| abstract_inverted_index.through | 79 |
| abstract_inverted_index.unified | 45 |
| abstract_inverted_index.compared | 103 |
| abstract_inverted_index.contains | 58 |
| abstract_inverted_index.geometry | 85 |
| abstract_inverted_index.grasping | 38 |
| abstract_inverted_index.grippers | 12 |
| abstract_inverted_index.increase | 94 |
| abstract_inverted_index.leverage | 77 |
| abstract_inverted_index.methods. | 106 |
| abstract_inverted_index.objects, | 15 |
| abstract_inverted_index.previous | 105 |
| abstract_inverted_index.progress | 2 |
| abstract_inverted_index.addresses | 33 |
| abstract_inverted_index.attention | 80 |
| abstract_inverted_index.dexterous | 5, 37 |
| abstract_inverted_index.features. | 86 |
| abstract_inverted_index.geometry. | 55 |
| abstract_inverted_index.grasping, | 6 |
| abstract_inverted_index.generalize | 26 |
| abstract_inverted_index.morphology | 52, 57 |
| abstract_inverted_index.correlation | 49 |
| abstract_inverted_index.experiments | 88 |
| abstract_inverted_index.information | 60 |
| abstract_inverted_index.end-effector | 84 |
| abstract_inverted_index.multi-finger | 4 |
| abstract_inverted_index.representing | 61 |
| abstract_inverted_index.end-effectors | 42, 102 |
| abstract_inverted_index.out-of-domain | 101 |
| abstract_inverted_index.end-effectors. | 30 |
| abstract_inverted_index.generalization | 39 |
| abstract_inverted_index.cross-embodiment, | 22 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |