Geometric evaluation and quantifying dosimetric impact of diverse deformable image registration algorithms on abdomen images with biomechanically modeled deformations Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1002/acm2.14511
Purpose Deformable image registration (DIR) has been increasingly used in radiation therapy (RT). The accuracy of DIR algorithms and how it impacts on the RT plan dosimetrically were examined in our study for abdominal sites using biomechanically modeled deformations. Methods Five pancreatic cancer patients were enrolled in this study. Following the guidelines of AAPM TG‐132, a patient‐specific quality assurance (QA) workflow was developed to evaluate DIR for the abdomen using the TG‐132 recommended virtual simulation software ImSimQA (Shrewsbury, UK). First, the planning CT was deformed to simulate respiratory motion using the embedded biomechanical model in ImSimQA. Additionally, 5 mm translational motion was added to the stomach, duodenum, and small bowel. The original planning CT and the deformed CT were then imported into Eclipse and MIM to perform DIR. The output displacement vector fields (DVFs) were compared with the ground truth from ImSimQA. Furthermore, the original treatment plan was recalculated on the ground‐truth deformed CT and the deformed CT (with Eclipse and MIM DVF). The dose errors were calculated on a voxel‐to‐voxel basis. Results Data analysis comparing DVF from Eclipse versus MIM show the average mean DVF magnitude errors of 2.8 ± 1.0 versus 1.1 ± 0.7 mm for stomach and duodenum, 5.2 ± 4.0 versus 2.5 ± 1.0 mm for small bowel, and 4.8 ± 4.1 versus 2.7 ± 1.1 mm for the gross tumor volume (GTV), respectively, across all patients. The mean dose error on stomach+duodenum and small bowel were 2.3 ± 0.6% for Eclipse, and 1.0 ± 0.3% for MIM. As the DIR magnitude error increases, the dose error range increase, for both Eclipse and MIM. Conclusion In our study, an initial assessment was conducted to evaluate the accuracy of DIR and its dosimetric impact on radiotherapy. A patient‐specific DIR QA workflow was developed for pancreatic cancer patients. This workflow exhibits promising potential for future implementation as a clinical workflow.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/acm2.14511
- OA Status
- gold
- Cited By
- 1
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402441655
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402441655Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/acm2.14511Digital Object Identifier
- Title
-
Geometric evaluation and quantifying dosimetric impact of diverse deformable image registration algorithms on abdomen images with biomechanically modeled deformationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-11Full publication date if available
- Authors
-
Yilin Liu, Pengpeng Zhang, Jun Hong, Sadegh Alam, Licheng Kuo, Yu‐Chi Hu, Wei Lü, Laura CerviñoList of authors in order
- Landing page
-
https://doi.org/10.1002/acm2.14511Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1002/acm2.14511Direct OA link when available
- Concepts
-
Voxel, Image registration, Nuclear medicine, Duodenum, Medicine, Ground truth, Displacement (psychology), Eclipse, Mathematics, Abdomen, Algorithm, Computer science, Radiology, Physics, Artificial intelligence, Image (mathematics), Surgery, Psychology, Psychotherapist, AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402441655 |
|---|---|
| doi | https://doi.org/10.1002/acm2.14511 |
| ids.doi | https://doi.org/10.1002/acm2.14511 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39258711 |
| ids.openalex | https://openalex.org/W4402441655 |
| fwci | 1.07211444 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D011880 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000465 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Algorithms |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D011879 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Radiotherapy Dosage |
| mesh[4].qualifier_ui | Q000532 |
| mesh[4].descriptor_ui | D010190 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | radiotherapy |
| mesh[4].descriptor_name | Pancreatic Neoplasms |
| mesh[5].qualifier_ui | Q000000981 |
| mesh[5].descriptor_ui | D010190 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | diagnostic imaging |
| mesh[5].descriptor_name | Pancreatic Neoplasms |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D050397 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Radiotherapy, Intensity-Modulated |
| mesh[7].qualifier_ui | Q000528 |
| mesh[7].descriptor_ui | D058958 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | radiation effects |
| mesh[7].descriptor_name | Organs at Risk |
| mesh[8].qualifier_ui | Q000000981 |
| mesh[8].descriptor_ui | D058958 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | diagnostic imaging |
| mesh[8].descriptor_name | Organs at Risk |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D014057 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Tomography, X-Ray Computed |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D007091 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Image Processing, Computer-Assisted |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D001696 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Biomechanical Phenomena |
| mesh[12].qualifier_ui | Q000592 |
| mesh[12].descriptor_ui | D011785 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | standards |
| mesh[12].descriptor_name | Quality Assurance, Health Care |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D012119 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Respiration |
| mesh[14].qualifier_ui | Q000000981 |
| mesh[14].descriptor_ui | D000005 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | diagnostic imaging |
| mesh[14].descriptor_name | Abdomen |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D061089 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Radiotherapy, Image-Guided |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | Q000379 |
| mesh[17].descriptor_ui | D011880 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | methods |
| mesh[17].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000465 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Algorithms |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D011879 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Radiotherapy Dosage |
| mesh[20].qualifier_ui | Q000532 |
| mesh[20].descriptor_ui | D010190 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | radiotherapy |
| mesh[20].descriptor_name | Pancreatic Neoplasms |
| mesh[21].qualifier_ui | Q000000981 |
| mesh[21].descriptor_ui | D010190 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | diagnostic imaging |
| mesh[21].descriptor_name | Pancreatic Neoplasms |
| mesh[22].qualifier_ui | Q000379 |
| mesh[22].descriptor_ui | D050397 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | methods |
| mesh[22].descriptor_name | Radiotherapy, Intensity-Modulated |
| mesh[23].qualifier_ui | Q000528 |
| mesh[23].descriptor_ui | D058958 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | radiation effects |
| mesh[23].descriptor_name | Organs at Risk |
| mesh[24].qualifier_ui | Q000000981 |
| mesh[24].descriptor_ui | D058958 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | diagnostic imaging |
| mesh[24].descriptor_name | Organs at Risk |
| mesh[25].qualifier_ui | Q000379 |
| mesh[25].descriptor_ui | D014057 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | methods |
| mesh[25].descriptor_name | Tomography, X-Ray Computed |
| mesh[26].qualifier_ui | Q000379 |
| mesh[26].descriptor_ui | D007091 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | methods |
| mesh[26].descriptor_name | Image Processing, Computer-Assisted |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D001696 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Biomechanical Phenomena |
| mesh[28].qualifier_ui | Q000592 |
| mesh[28].descriptor_ui | D011785 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | standards |
| mesh[28].descriptor_name | Quality Assurance, Health Care |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D012119 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Respiration |
| mesh[30].qualifier_ui | Q000000981 |
| mesh[30].descriptor_ui | D000005 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | diagnostic imaging |
| mesh[30].descriptor_name | Abdomen |
| mesh[31].qualifier_ui | Q000379 |
| mesh[31].descriptor_ui | D061089 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | methods |
| mesh[31].descriptor_name | Radiotherapy, Image-Guided |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D006801 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Humans |
| mesh[33].qualifier_ui | Q000379 |
| mesh[33].descriptor_ui | D011880 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | methods |
| mesh[33].descriptor_name | Radiotherapy Planning, Computer-Assisted |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000465 |
| mesh[34].is_major_topic | True |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Algorithms |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D011879 |
| mesh[35].is_major_topic | True |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Radiotherapy Dosage |
| mesh[36].qualifier_ui | Q000532 |
| mesh[36].descriptor_ui | D010190 |
| mesh[36].is_major_topic | True |
| mesh[36].qualifier_name | radiotherapy |
| mesh[36].descriptor_name | Pancreatic Neoplasms |
| mesh[37].qualifier_ui | Q000000981 |
| mesh[37].descriptor_ui | D010190 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | diagnostic imaging |
| mesh[37].descriptor_name | Pancreatic Neoplasms |
| mesh[38].qualifier_ui | Q000379 |
| mesh[38].descriptor_ui | D050397 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | methods |
| mesh[38].descriptor_name | Radiotherapy, Intensity-Modulated |
| mesh[39].qualifier_ui | Q000528 |
| mesh[39].descriptor_ui | D058958 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | radiation effects |
| mesh[39].descriptor_name | Organs at Risk |
| mesh[40].qualifier_ui | Q000000981 |
| mesh[40].descriptor_ui | D058958 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | diagnostic imaging |
| mesh[40].descriptor_name | Organs at Risk |
| mesh[41].qualifier_ui | Q000379 |
| mesh[41].descriptor_ui | D014057 |
| mesh[41].is_major_topic | True |
| mesh[41].qualifier_name | methods |
| mesh[41].descriptor_name | Tomography, X-Ray Computed |
| mesh[42].qualifier_ui | Q000379 |
| mesh[42].descriptor_ui | D007091 |
| mesh[42].is_major_topic | True |
| mesh[42].qualifier_name | methods |
| mesh[42].descriptor_name | Image Processing, Computer-Assisted |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D001696 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Biomechanical Phenomena |
| mesh[44].qualifier_ui | Q000592 |
| mesh[44].descriptor_ui | D011785 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | standards |
| mesh[44].descriptor_name | Quality Assurance, Health Care |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D012119 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Respiration |
| mesh[46].qualifier_ui | Q000000981 |
| mesh[46].descriptor_ui | D000005 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | diagnostic imaging |
| mesh[46].descriptor_name | Abdomen |
| mesh[47].qualifier_ui | Q000379 |
| mesh[47].descriptor_ui | D061089 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | methods |
| mesh[47].descriptor_name | Radiotherapy, Image-Guided |
| type | article |
| title | Geometric evaluation and quantifying dosimetric impact of diverse deformable image registration algorithms on abdomen images with biomechanically modeled deformations |
| biblio.issue | 12 |
| biblio.volume | 25 |
| biblio.last_page | e14511 |
| biblio.first_page | e14511 |
| topics[0].id | https://openalex.org/T10358 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3108 |
| topics[0].subfield.display_name | Radiation |
| topics[0].display_name | Advanced Radiotherapy Techniques |
| topics[1].id | https://openalex.org/T10522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Medical Imaging Techniques and Applications |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9994999766349792 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| is_xpac | False |
| apc_list.value | 2850 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3575 |
| apc_paid.value | 2850 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3575 |
| concepts[0].id | https://openalex.org/C54170458 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7045843005180359 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q663554 |
| concepts[0].display_name | Voxel |
| concepts[1].id | https://openalex.org/C166704113 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6612051725387573 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q861092 |
| concepts[1].display_name | Image registration |
| concepts[2].id | https://openalex.org/C2989005 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6120363473892212 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[2].display_name | Nuclear medicine |
| concepts[3].id | https://openalex.org/C2776809568 |
| concepts[3].level | 2 |
| concepts[3].score | 0.567182183265686 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q134955 |
| concepts[3].display_name | Duodenum |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5553937554359436 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C146849305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5276431441307068 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[5].display_name | Ground truth |
| concepts[6].id | https://openalex.org/C107551265 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5120878219604492 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1458245 |
| concepts[6].display_name | Displacement (psychology) |
| concepts[7].id | https://openalex.org/C2778505590 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4692644476890564 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141022 |
| concepts[7].display_name | Eclipse |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4331095218658447 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C2779983558 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42202118039131165 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9597 |
| concepts[9].display_name | Abdomen |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3902595639228821 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.35373643040657043 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2867792248725891 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2649025022983551 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2593778669834137 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C115961682 |
| concepts[15].level | 2 |
| concepts[15].score | 0.13547727465629578 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[15].display_name | Image (mathematics) |
| concepts[16].id | https://openalex.org/C141071460 |
| concepts[16].level | 1 |
| concepts[16].score | 0.12072774767875671 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[16].display_name | Surgery |
| concepts[17].id | https://openalex.org/C15744967 |
| concepts[17].level | 0 |
| concepts[17].score | 0.08477237820625305 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[17].display_name | Psychology |
| concepts[18].id | https://openalex.org/C542102704 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[18].display_name | Psychotherapist |
| concepts[19].id | https://openalex.org/C1276947 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[19].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/voxel |
| keywords[0].score | 0.7045843005180359 |
| keywords[0].display_name | Voxel |
| keywords[1].id | https://openalex.org/keywords/image-registration |
| keywords[1].score | 0.6612051725387573 |
| keywords[1].display_name | Image registration |
| keywords[2].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[2].score | 0.6120363473892212 |
| keywords[2].display_name | Nuclear medicine |
| keywords[3].id | https://openalex.org/keywords/duodenum |
| keywords[3].score | 0.567182183265686 |
| keywords[3].display_name | Duodenum |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.5553937554359436 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/ground-truth |
| keywords[5].score | 0.5276431441307068 |
| keywords[5].display_name | Ground truth |
| keywords[6].id | https://openalex.org/keywords/displacement |
| keywords[6].score | 0.5120878219604492 |
| keywords[6].display_name | Displacement (psychology) |
| keywords[7].id | https://openalex.org/keywords/eclipse |
| keywords[7].score | 0.4692644476890564 |
| keywords[7].display_name | Eclipse |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4331095218658447 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/abdomen |
| keywords[9].score | 0.42202118039131165 |
| keywords[9].display_name | Abdomen |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.3902595639228821 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.35373643040657043 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/radiology |
| keywords[12].score | 0.2867792248725891 |
| keywords[12].display_name | Radiology |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.2649025022983551 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.2593778669834137 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/image |
| keywords[15].score | 0.13547727465629578 |
| keywords[15].display_name | Image (mathematics) |
| keywords[16].id | https://openalex.org/keywords/surgery |
| keywords[16].score | 0.12072774767875671 |
| keywords[16].display_name | Surgery |
| keywords[17].id | https://openalex.org/keywords/psychology |
| keywords[17].score | 0.08477237820625305 |
| keywords[17].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1002/acm2.14511 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S29972171 |
| locations[0].source.issn | 1526-9914 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1526-9914 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Applied Clinical Medical Physics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Applied Clinical Medical Physics |
| locations[0].landing_page_url | https://doi.org/10.1002/acm2.14511 |
| locations[1].id | pmid:39258711 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of applied clinical medical physics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39258711 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11633795 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Appl Clin Med Phys |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11633795 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100729746 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2540-1295 |
| authorships[0].author.display_name | Yilin Liu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1334819555 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[0].institutions[0].id | https://openalex.org/I1334819555 |
| authorships[0].institutions[0].ror | https://ror.org/02yrq0923 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1334819555 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Memorial Sloan Kettering Cancer Center |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yilin Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[1].author.id | https://openalex.org/A5100684255 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2622-9367 |
| authorships[1].author.display_name | Pengpeng Zhang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1334819555 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[1].institutions[0].id | https://openalex.org/I1334819555 |
| authorships[1].institutions[0].ror | https://ror.org/02yrq0923 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I1334819555 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Memorial Sloan Kettering Cancer Center |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pengpeng Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[2].author.id | https://openalex.org/A5112637747 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jun Hong |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1334819555 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[2].institutions[0].id | https://openalex.org/I1334819555 |
| authorships[2].institutions[0].ror | https://ror.org/02yrq0923 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I1334819555 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Memorial Sloan Kettering Cancer Center |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jun Hong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[3].author.id | https://openalex.org/A5069653985 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7845-4959 |
| authorships[3].author.display_name | Sadegh Alam |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1334819555 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[3].institutions[0].id | https://openalex.org/I1334819555 |
| authorships[3].institutions[0].ror | https://ror.org/02yrq0923 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1334819555 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Memorial Sloan Kettering Cancer Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sadegh Alam |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[4].author.id | https://openalex.org/A5084098390 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0336-493X |
| authorships[4].author.display_name | Licheng Kuo |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1334819555 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[4].institutions[0].id | https://openalex.org/I1334819555 |
| authorships[4].institutions[0].ror | https://ror.org/02yrq0923 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1334819555 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Memorial Sloan Kettering Cancer Center |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | LiCheng Kuo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[5].author.id | https://openalex.org/A5062174467 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7742-2971 |
| authorships[5].author.display_name | Yu‐Chi Hu |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1334819555 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[5].institutions[0].id | https://openalex.org/I1334819555 |
| authorships[5].institutions[0].ror | https://ror.org/02yrq0923 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I1334819555 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Memorial Sloan Kettering Cancer Center |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yu‐chi Hu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[6].author.id | https://openalex.org/A5005328001 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0829-5440 |
| authorships[6].author.display_name | Wei Lü |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1334819555 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[6].institutions[0].id | https://openalex.org/I1334819555 |
| authorships[6].institutions[0].ror | https://ror.org/02yrq0923 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I1334819555 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Memorial Sloan Kettering Cancer Center |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wei Lu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[7].author.id | https://openalex.org/A5058225724 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6479-6990 |
| authorships[7].author.display_name | Laura Cerviño |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1334819555 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| authorships[7].institutions[0].id | https://openalex.org/I1334819555 |
| authorships[7].institutions[0].ror | https://ror.org/02yrq0923 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I1334819555 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Memorial Sloan Kettering Cancer Center |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Laura Cerviño |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Medical Physics Memorial Sloan Kettering Cancer Center New York New York USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1002/acm2.14511 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Geometric evaluation and quantifying dosimetric impact of diverse deformable image registration algorithms on abdomen images with biomechanically modeled deformations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10358 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3108 |
| primary_topic.subfield.display_name | Radiation |
| primary_topic.display_name | Advanced Radiotherapy Techniques |
| related_works | https://openalex.org/W129679875, https://openalex.org/W137217271, https://openalex.org/W1975473270, https://openalex.org/W2414800583, https://openalex.org/W91167106, https://openalex.org/W2366969651, https://openalex.org/W1983323341, https://openalex.org/W2386269690, https://openalex.org/W3027020613, https://openalex.org/W2038239089 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1002/acm2.14511 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S29972171 |
| best_oa_location.source.issn | 1526-9914 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1526-9914 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Applied Clinical Medical Physics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Applied Clinical Medical Physics |
| best_oa_location.landing_page_url | https://doi.org/10.1002/acm2.14511 |
| primary_location.id | doi:10.1002/acm2.14511 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S29972171 |
| primary_location.source.issn | 1526-9914 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1526-9914 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Applied Clinical Medical Physics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Applied Clinical Medical Physics |
| primary_location.landing_page_url | https://doi.org/10.1002/acm2.14511 |
| publication_date | 2024-09-11 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2949012288, https://openalex.org/W2756314573, https://openalex.org/W1999613593, https://openalex.org/W2152014572, https://openalex.org/W2168201175, https://openalex.org/W2120147554, https://openalex.org/W2105307841, https://openalex.org/W1995184405, https://openalex.org/W2013067040, https://openalex.org/W2806031808, https://openalex.org/W3045406198, https://openalex.org/W1997947210, https://openalex.org/W2978962857, https://openalex.org/W2113687011, https://openalex.org/W4318066955, https://openalex.org/W3159862285 |
| referenced_works_count | 16 |
| abstract_inverted_index.5 | 98 |
| abstract_inverted_index.A | 290 |
| abstract_inverted_index.a | 56, 170, 310 |
| abstract_inverted_index.As | 253 |
| abstract_inverted_index.CT | 83, 114, 118, 154, 158 |
| abstract_inverted_index.In | 270 |
| abstract_inverted_index.QA | 293 |
| abstract_inverted_index.RT | 25 |
| abstract_inverted_index.an | 273 |
| abstract_inverted_index.as | 309 |
| abstract_inverted_index.in | 10, 30, 47, 95 |
| abstract_inverted_index.it | 21 |
| abstract_inverted_index.mm | 99, 197, 209, 221 |
| abstract_inverted_index.of | 16, 53, 189, 282 |
| abstract_inverted_index.on | 23, 150, 169, 236, 288 |
| abstract_inverted_index.to | 64, 86, 104, 126, 278 |
| abstract_inverted_index.± | 191, 195, 203, 207, 215, 219, 243, 249 |
| abstract_inverted_index.0.7 | 196 |
| abstract_inverted_index.1.0 | 192, 208, 248 |
| abstract_inverted_index.1.1 | 194, 220 |
| abstract_inverted_index.2.3 | 242 |
| abstract_inverted_index.2.5 | 206 |
| abstract_inverted_index.2.7 | 218 |
| abstract_inverted_index.2.8 | 190 |
| abstract_inverted_index.4.0 | 204 |
| abstract_inverted_index.4.1 | 216 |
| abstract_inverted_index.4.8 | 214 |
| abstract_inverted_index.5.2 | 202 |
| abstract_inverted_index.DIR | 17, 66, 255, 283, 292 |
| abstract_inverted_index.DVF | 177, 186 |
| abstract_inverted_index.MIM | 125, 162, 181 |
| abstract_inverted_index.The | 14, 111, 129, 164, 232 |
| abstract_inverted_index.all | 230 |
| abstract_inverted_index.and | 19, 108, 115, 124, 155, 161, 200, 213, 238, 247, 267, 284 |
| abstract_inverted_index.for | 33, 67, 198, 210, 222, 245, 251, 264, 297, 306 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.how | 20 |
| abstract_inverted_index.its | 285 |
| abstract_inverted_index.our | 31, 271 |
| abstract_inverted_index.the | 24, 51, 68, 71, 81, 91, 105, 116, 138, 144, 151, 156, 183, 223, 254, 259, 280 |
| abstract_inverted_index.was | 62, 84, 102, 148, 276, 295 |
| abstract_inverted_index.(QA) | 60 |
| abstract_inverted_index.0.3% | 250 |
| abstract_inverted_index.0.6% | 244 |
| abstract_inverted_index.AAPM | 54 |
| abstract_inverted_index.DIR. | 128 |
| abstract_inverted_index.Data | 174 |
| abstract_inverted_index.Five | 41 |
| abstract_inverted_index.MIM. | 252, 268 |
| abstract_inverted_index.This | 301 |
| abstract_inverted_index.UK). | 79 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.both | 265 |
| abstract_inverted_index.dose | 165, 234, 260 |
| abstract_inverted_index.from | 141, 178 |
| abstract_inverted_index.into | 122 |
| abstract_inverted_index.mean | 185, 233 |
| abstract_inverted_index.plan | 26, 147 |
| abstract_inverted_index.show | 182 |
| abstract_inverted_index.then | 120 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.used | 9 |
| abstract_inverted_index.were | 28, 45, 119, 135, 167, 241 |
| abstract_inverted_index.with | 137 |
| abstract_inverted_index.(DIR) | 5 |
| abstract_inverted_index.(RT). | 13 |
| abstract_inverted_index.(with | 159 |
| abstract_inverted_index.DVF). | 163 |
| abstract_inverted_index.added | 103 |
| abstract_inverted_index.bowel | 240 |
| abstract_inverted_index.error | 235, 257, 261 |
| abstract_inverted_index.gross | 224 |
| abstract_inverted_index.image | 3 |
| abstract_inverted_index.model | 94 |
| abstract_inverted_index.range | 262 |
| abstract_inverted_index.sites | 35 |
| abstract_inverted_index.small | 109, 211, 239 |
| abstract_inverted_index.study | 32 |
| abstract_inverted_index.truth | 140 |
| abstract_inverted_index.tumor | 225 |
| abstract_inverted_index.using | 36, 70, 90 |
| abstract_inverted_index.(DVFs) | 134 |
| abstract_inverted_index.(GTV), | 227 |
| abstract_inverted_index.First, | 80 |
| abstract_inverted_index.across | 229 |
| abstract_inverted_index.basis. | 172 |
| abstract_inverted_index.bowel, | 212 |
| abstract_inverted_index.bowel. | 110 |
| abstract_inverted_index.cancer | 43, 299 |
| abstract_inverted_index.errors | 166, 188 |
| abstract_inverted_index.fields | 133 |
| abstract_inverted_index.future | 307 |
| abstract_inverted_index.ground | 139 |
| abstract_inverted_index.impact | 287 |
| abstract_inverted_index.motion | 89, 101 |
| abstract_inverted_index.output | 130 |
| abstract_inverted_index.study, | 272 |
| abstract_inverted_index.study. | 49 |
| abstract_inverted_index.vector | 132 |
| abstract_inverted_index.versus | 180, 193, 205, 217 |
| abstract_inverted_index.volume | 226 |
| abstract_inverted_index.Eclipse | 123, 160, 179, 266 |
| abstract_inverted_index.ImSimQA | 77 |
| abstract_inverted_index.Methods | 40 |
| abstract_inverted_index.Purpose | 1 |
| abstract_inverted_index.Results | 173 |
| abstract_inverted_index.abdomen | 69 |
| abstract_inverted_index.average | 184 |
| abstract_inverted_index.impacts | 22 |
| abstract_inverted_index.initial | 274 |
| abstract_inverted_index.modeled | 38 |
| abstract_inverted_index.perform | 127 |
| abstract_inverted_index.quality | 58 |
| abstract_inverted_index.stomach | 199 |
| abstract_inverted_index.therapy | 12 |
| abstract_inverted_index.virtual | 74 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Eclipse, | 246 |
| abstract_inverted_index.ImSimQA. | 96, 142 |
| abstract_inverted_index.TG‐132 | 72 |
| abstract_inverted_index.accuracy | 15, 281 |
| abstract_inverted_index.analysis | 175 |
| abstract_inverted_index.clinical | 311 |
| abstract_inverted_index.compared | 136 |
| abstract_inverted_index.deformed | 85, 117, 153, 157 |
| abstract_inverted_index.embedded | 92 |
| abstract_inverted_index.enrolled | 46 |
| abstract_inverted_index.evaluate | 65, 279 |
| abstract_inverted_index.examined | 29 |
| abstract_inverted_index.exhibits | 303 |
| abstract_inverted_index.imported | 121 |
| abstract_inverted_index.original | 112, 145 |
| abstract_inverted_index.patients | 44 |
| abstract_inverted_index.planning | 82, 113 |
| abstract_inverted_index.simulate | 87 |
| abstract_inverted_index.software | 76 |
| abstract_inverted_index.stomach, | 106 |
| abstract_inverted_index.workflow | 61, 294, 302 |
| abstract_inverted_index.Following | 50 |
| abstract_inverted_index.TG‐132, | 55 |
| abstract_inverted_index.abdominal | 34 |
| abstract_inverted_index.assurance | 59 |
| abstract_inverted_index.comparing | 176 |
| abstract_inverted_index.conducted | 277 |
| abstract_inverted_index.developed | 63, 296 |
| abstract_inverted_index.duodenum, | 107, 201 |
| abstract_inverted_index.increase, | 263 |
| abstract_inverted_index.magnitude | 187, 256 |
| abstract_inverted_index.patients. | 231, 300 |
| abstract_inverted_index.potential | 305 |
| abstract_inverted_index.promising | 304 |
| abstract_inverted_index.radiation | 11 |
| abstract_inverted_index.treatment | 146 |
| abstract_inverted_index.workflow. | 312 |
| abstract_inverted_index.Conclusion | 269 |
| abstract_inverted_index.Deformable | 2 |
| abstract_inverted_index.algorithms | 18 |
| abstract_inverted_index.assessment | 275 |
| abstract_inverted_index.calculated | 168 |
| abstract_inverted_index.dosimetric | 286 |
| abstract_inverted_index.guidelines | 52 |
| abstract_inverted_index.increases, | 258 |
| abstract_inverted_index.pancreatic | 42, 298 |
| abstract_inverted_index.simulation | 75 |
| abstract_inverted_index.recommended | 73 |
| abstract_inverted_index.respiratory | 88 |
| abstract_inverted_index.(Shrewsbury, | 78 |
| abstract_inverted_index.Furthermore, | 143 |
| abstract_inverted_index.displacement | 131 |
| abstract_inverted_index.increasingly | 8 |
| abstract_inverted_index.recalculated | 149 |
| abstract_inverted_index.registration | 4 |
| abstract_inverted_index.Additionally, | 97 |
| abstract_inverted_index.biomechanical | 93 |
| abstract_inverted_index.deformations. | 39 |
| abstract_inverted_index.radiotherapy. | 289 |
| abstract_inverted_index.respectively, | 228 |
| abstract_inverted_index.translational | 100 |
| abstract_inverted_index.dosimetrically | 27 |
| abstract_inverted_index.ground‐truth | 152 |
| abstract_inverted_index.implementation | 308 |
| abstract_inverted_index.biomechanically | 37 |
| abstract_inverted_index.stomach+duodenum | 237 |
| abstract_inverted_index.patient‐specific | 57, 291 |
| abstract_inverted_index.voxel‐to‐voxel | 171 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.73947071 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |