Geometric insights into support vector machine behavior using the KKT conditions Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1214/21-ejs1902
The support vector machine (SVM) is a powerful and widely used classification algorithm. This paper uses the Karush-Kuhn-Tucker conditions to provide rigorous mathematical proof for new insights into the behavior of SVM. These insights provide unexpected relationships between SVM and two other linear classifiers: the mean difference and the maximal data piling direction. For example, we show that in many cases SVM can be viewed as a cropped version of these classifiers. By carefully exploring these connections we show how SVM tuning behavior is affected by data characteristics including: balanced vs. unbalanced classes, low vs. high dimension, separable vs. non-separable data. These results provide further insights into tuning SVM via cross-validation by explaining observed pathological behavior and motivating improved cross-validation methodology.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1214/21-ejs1902
- https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-15/issue-2/Geometric-insights-into-support-vector-machine-behavior-using-the-KKT/10.1214/21-EJS1902.pdf
- OA Status
- gold
- Cited By
- 7
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2605494714
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2605494714Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1214/21-ejs1902Digital Object Identifier
- Title
-
Geometric insights into support vector machine behavior using the KKT conditionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Iain Carmichael, J. S. MarronList of authors in order
- Landing page
-
https://doi.org/10.1214/21-ejs1902Publisher landing page
- PDF URL
-
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-15/issue-2/Geometric-insights-into-support-vector-machine-behavior-using-the-KKT/10.1214/21-EJS1902.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-15/issue-2/Geometric-insights-into-support-vector-machine-behavior-using-the-KKT/10.1214/21-EJS1902.pdfDirect OA link when available
- Concepts
-
Karush–Kuhn–Tucker conditions, Mathematics, Support vector machine, Artificial intelligence, Machine learning, Mathematical optimization, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 2, 2021: 2, 2020: 1, 2019: 1, 2017: 1Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2605494714 |
|---|---|
| doi | https://doi.org/10.1214/21-ejs1902 |
| ids.doi | https://doi.org/10.1214/21-ejs1902 |
| ids.mag | 2605494714 |
| ids.openalex | https://openalex.org/W2605494714 |
| fwci | 0.40887792 |
| type | article |
| title | Geometric insights into support vector machine behavior using the KKT conditions |
| biblio.issue | 2 |
| biblio.volume | 15 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| topics[1].id | https://openalex.org/T10885 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9711999893188477 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene expression and cancer classification |
| topics[2].id | https://openalex.org/T12874 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9663000106811523 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Imaging for Blood Diseases |
| is_xpac | False |
| apc_list.value | 675 |
| apc_list.currency | USD |
| apc_list.value_usd | 675 |
| apc_paid.value | 675 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 675 |
| concepts[0].id | https://openalex.org/C50454189 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9584807753562927 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2075125 |
| concepts[0].display_name | Karush–Kuhn–Tucker conditions |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6746138334274292 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C12267149 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5490163564682007 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[2].display_name | Support vector machine |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.37593355774879456 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3491455912590027 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3163546323776245 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2119026482105255 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/karush–kuhn–tucker-conditions |
| keywords[0].score | 0.9584807753562927 |
| keywords[0].display_name | Karush–Kuhn–Tucker conditions |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.6746138334274292 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/support-vector-machine |
| keywords[2].score | 0.5490163564682007 |
| keywords[2].display_name | Support vector machine |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.37593355774879456 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3491455912590027 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.3163546323776245 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.2119026482105255 |
| keywords[6].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1214/21-ejs1902 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S997959834 |
| locations[0].source.issn | 1935-7524 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1935-7524 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Electronic Journal of Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310319881 |
| locations[0].source.host_organization_name | Institute of Mathematical Statistics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319881 |
| locations[0].source.host_organization_lineage_names | Institute of Mathematical Statistics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-15/issue-2/Geometric-insights-into-support-vector-machine-behavior-using-the-KKT/10.1214/21-EJS1902.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronic Journal of Statistics |
| locations[0].landing_page_url | https://doi.org/10.1214/21-ejs1902 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5027265524 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7239-035X |
| authorships[0].author.display_name | Iain Carmichael |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Iain Carmichael |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5060651495 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | J. S. Marron |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | J. S. Marron |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-15/issue-2/Geometric-insights-into-support-vector-machine-behavior-using-the-KKT/10.1214/21-EJS1902.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Geometric insights into support vector machine behavior using the KKT conditions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W4294362052, https://openalex.org/W1978311076, https://openalex.org/W2961085424, https://openalex.org/W2120257557, https://openalex.org/W4306674287, https://openalex.org/W2920493340, https://openalex.org/W4292761160, https://openalex.org/W4319661813, https://openalex.org/W3046775127, https://openalex.org/W3107602296 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2017 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1214/21-ejs1902 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S997959834 |
| best_oa_location.source.issn | 1935-7524 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1935-7524 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Electronic Journal of Statistics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319881 |
| best_oa_location.source.host_organization_name | Institute of Mathematical Statistics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319881 |
| best_oa_location.source.host_organization_lineage_names | Institute of Mathematical Statistics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-15/issue-2/Geometric-insights-into-support-vector-machine-behavior-using-the-KKT/10.1214/21-EJS1902.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronic Journal of Statistics |
| best_oa_location.landing_page_url | https://doi.org/10.1214/21-ejs1902 |
| primary_location.id | doi:10.1214/21-ejs1902 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S997959834 |
| primary_location.source.issn | 1935-7524 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1935-7524 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Electronic Journal of Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310319881 |
| primary_location.source.host_organization_name | Institute of Mathematical Statistics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319881 |
| primary_location.source.host_organization_lineage_names | Institute of Mathematical Statistics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://projecteuclid.org/journals/electronic-journal-of-statistics/volume-15/issue-2/Geometric-insights-into-support-vector-machine-behavior-using-the-KKT/10.1214/21-EJS1902.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronic Journal of Statistics |
| primary_location.landing_page_url | https://doi.org/10.1214/21-ejs1902 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2325127698, https://openalex.org/W2027688434, https://openalex.org/W2138882494, https://openalex.org/W2125795421, https://openalex.org/W1604585277, https://openalex.org/W2158078575, https://openalex.org/W1932600547, https://openalex.org/W2158994553, https://openalex.org/W2156736119, https://openalex.org/W2594475271, https://openalex.org/W2082988498, https://openalex.org/W2574179923, https://openalex.org/W2118374803, https://openalex.org/W2786715987, https://openalex.org/W2118871591, https://openalex.org/W2017639385, https://openalex.org/W2117562417, https://openalex.org/W2007527993, https://openalex.org/W107875978, https://openalex.org/W2170756173, https://openalex.org/W2059503458, https://openalex.org/W2144902422, https://openalex.org/W2161920802, https://openalex.org/W1560724230, https://openalex.org/W1510073064, https://openalex.org/W1567323455, https://openalex.org/W2035679598, https://openalex.org/W2128548761, https://openalex.org/W2138550913, https://openalex.org/W2149298154, https://openalex.org/W2109943925, https://openalex.org/W2133958955, https://openalex.org/W1503398984, https://openalex.org/W3006181408, https://openalex.org/W2166168182, https://openalex.org/W2950455396, https://openalex.org/W1698155719, https://openalex.org/W2171074980, https://openalex.org/W2584149735, https://openalex.org/W1565377632, https://openalex.org/W1663973292 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 6, 66 |
| abstract_inverted_index.By | 72 |
| abstract_inverted_index.as | 65 |
| abstract_inverted_index.be | 63 |
| abstract_inverted_index.by | 85, 111 |
| abstract_inverted_index.in | 58 |
| abstract_inverted_index.is | 5, 83 |
| abstract_inverted_index.of | 30, 69 |
| abstract_inverted_index.to | 19 |
| abstract_inverted_index.we | 55, 77 |
| abstract_inverted_index.For | 53 |
| abstract_inverted_index.SVM | 38, 61, 80, 108 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 8, 39, 47, 116 |
| abstract_inverted_index.can | 62 |
| abstract_inverted_index.for | 24 |
| abstract_inverted_index.how | 79 |
| abstract_inverted_index.low | 93 |
| abstract_inverted_index.new | 25 |
| abstract_inverted_index.the | 16, 28, 44, 48 |
| abstract_inverted_index.two | 40 |
| abstract_inverted_index.via | 109 |
| abstract_inverted_index.vs. | 90, 94, 98 |
| abstract_inverted_index.SVM. | 31 |
| abstract_inverted_index.This | 13 |
| abstract_inverted_index.data | 50, 86 |
| abstract_inverted_index.high | 95 |
| abstract_inverted_index.into | 27, 106 |
| abstract_inverted_index.many | 59 |
| abstract_inverted_index.mean | 45 |
| abstract_inverted_index.show | 56, 78 |
| abstract_inverted_index.that | 57 |
| abstract_inverted_index.used | 10 |
| abstract_inverted_index.uses | 15 |
| abstract_inverted_index.(SVM) | 4 |
| abstract_inverted_index.These | 32, 101 |
| abstract_inverted_index.cases | 60 |
| abstract_inverted_index.data. | 100 |
| abstract_inverted_index.other | 41 |
| abstract_inverted_index.paper | 14 |
| abstract_inverted_index.proof | 23 |
| abstract_inverted_index.these | 70, 75 |
| abstract_inverted_index.linear | 42 |
| abstract_inverted_index.piling | 51 |
| abstract_inverted_index.tuning | 81, 107 |
| abstract_inverted_index.vector | 2 |
| abstract_inverted_index.viewed | 64 |
| abstract_inverted_index.widely | 9 |
| abstract_inverted_index.between | 37 |
| abstract_inverted_index.cropped | 67 |
| abstract_inverted_index.further | 104 |
| abstract_inverted_index.machine | 3 |
| abstract_inverted_index.maximal | 49 |
| abstract_inverted_index.provide | 20, 34, 103 |
| abstract_inverted_index.results | 102 |
| abstract_inverted_index.support | 1 |
| abstract_inverted_index.version | 68 |
| abstract_inverted_index.affected | 84 |
| abstract_inverted_index.balanced | 89 |
| abstract_inverted_index.behavior | 29, 82, 115 |
| abstract_inverted_index.classes, | 92 |
| abstract_inverted_index.example, | 54 |
| abstract_inverted_index.improved | 118 |
| abstract_inverted_index.insights | 26, 33, 105 |
| abstract_inverted_index.observed | 113 |
| abstract_inverted_index.powerful | 7 |
| abstract_inverted_index.rigorous | 21 |
| abstract_inverted_index.carefully | 73 |
| abstract_inverted_index.exploring | 74 |
| abstract_inverted_index.separable | 97 |
| abstract_inverted_index.algorithm. | 12 |
| abstract_inverted_index.conditions | 18 |
| abstract_inverted_index.difference | 46 |
| abstract_inverted_index.dimension, | 96 |
| abstract_inverted_index.direction. | 52 |
| abstract_inverted_index.explaining | 112 |
| abstract_inverted_index.including: | 88 |
| abstract_inverted_index.motivating | 117 |
| abstract_inverted_index.unbalanced | 91 |
| abstract_inverted_index.unexpected | 35 |
| abstract_inverted_index.connections | 76 |
| abstract_inverted_index.classifiers. | 71 |
| abstract_inverted_index.classifiers: | 43 |
| abstract_inverted_index.mathematical | 22 |
| abstract_inverted_index.methodology. | 120 |
| abstract_inverted_index.pathological | 114 |
| abstract_inverted_index.non-separable | 99 |
| abstract_inverted_index.relationships | 36 |
| abstract_inverted_index.classification | 11 |
| abstract_inverted_index.characteristics | 87 |
| abstract_inverted_index.cross-validation | 110, 119 |
| abstract_inverted_index.Karush-Kuhn-Tucker | 17 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.59667175 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |