Geometric post-Lie deformations of post-Lie algebras and regularity structures Article Swipe
In order to derive a class of geometric-type deformations of post-Lie algebras, we first extend the geometrical notions of torsion and curvature for a general bilinear operation on a Lie algebra, then we derive compatibility conditions which will ensure that the post-Lie structure remains preserved. This type of deformation applies in particular to the post-Lie algebra introduced in arXiv:2306.02484v3 in the context of regularity structures theory. We use this deformation to derive a pre-Lie structure for the regularity structures approach given in arXiv:2103.04187v4, which is isomorphic to the post-Lie algebra studied in arXiv:2306.02484v3 at the level of their associated Hopf algebras. In the case of sections of smooth vector bundles of a finite-dimensional manifold, this deformed structure contains also, as a subalgebra, the post-Lie algebra structure introduced in arXiv:1203.4738v3 in the geometrical context of moving frames.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.01560
- https://arxiv.org/pdf/2508.01560
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417099710
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417099710Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.01560Digital Object Identifier
- Title
-
Geometric post-Lie deformations of post-Lie algebras and regularity structuresWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-03Full publication date if available
- Authors
-
Julien JacquesList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.01560Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.01560Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.01560Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417099710 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.01560 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.01560 |
| ids.openalex | https://openalex.org/W4417099710 |
| fwci | |
| type | preprint |
| title | Geometric post-Lie deformations of post-Lie algebras and regularity structures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.01560 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.01560 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.01560 |
| locations[1].id | doi:10.48550/arxiv.2508.01560 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.01560 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5026999947 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4808-2781 |
| authorships[0].author.display_name | Julien Jacques |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jacques, Jean-David |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.01560 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Geometric post-Lie deformations of post-Lie algebras and regularity structures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-08T09:52:03.286989 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.01560 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.01560 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.01560 |
| primary_location.id | pmh:oai:arXiv.org:2508.01560 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.01560 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.01560 |
| publication_date | 2025-08-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 23, 28, 72, 111, 120 |
| abstract_inverted_index.In | 0, 101 |
| abstract_inverted_index.We | 66 |
| abstract_inverted_index.as | 119 |
| abstract_inverted_index.at | 93 |
| abstract_inverted_index.in | 50, 57, 59, 81, 91, 127, 129 |
| abstract_inverted_index.is | 84 |
| abstract_inverted_index.of | 6, 9, 18, 47, 62, 96, 104, 106, 110, 133 |
| abstract_inverted_index.on | 27 |
| abstract_inverted_index.to | 2, 52, 70, 86 |
| abstract_inverted_index.we | 12, 32 |
| abstract_inverted_index.Lie | 29 |
| abstract_inverted_index.and | 20 |
| abstract_inverted_index.for | 22, 75 |
| abstract_inverted_index.the | 15, 40, 53, 60, 76, 87, 94, 102, 122, 130 |
| abstract_inverted_index.use | 67 |
| abstract_inverted_index.Hopf | 99 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.case | 103 |
| abstract_inverted_index.that | 39 |
| abstract_inverted_index.then | 31 |
| abstract_inverted_index.this | 68, 114 |
| abstract_inverted_index.type | 46 |
| abstract_inverted_index.will | 37 |
| abstract_inverted_index.also, | 118 |
| abstract_inverted_index.class | 5 |
| abstract_inverted_index.first | 13 |
| abstract_inverted_index.given | 80 |
| abstract_inverted_index.level | 95 |
| abstract_inverted_index.order | 1 |
| abstract_inverted_index.their | 97 |
| abstract_inverted_index.which | 36, 83 |
| abstract_inverted_index.derive | 3, 33, 71 |
| abstract_inverted_index.ensure | 38 |
| abstract_inverted_index.extend | 14 |
| abstract_inverted_index.moving | 134 |
| abstract_inverted_index.smooth | 107 |
| abstract_inverted_index.vector | 108 |
| abstract_inverted_index.algebra | 55, 89, 124 |
| abstract_inverted_index.applies | 49 |
| abstract_inverted_index.bundles | 109 |
| abstract_inverted_index.context | 61, 132 |
| abstract_inverted_index.frames. | 135 |
| abstract_inverted_index.general | 24 |
| abstract_inverted_index.notions | 17 |
| abstract_inverted_index.pre-Lie | 73 |
| abstract_inverted_index.remains | 43 |
| abstract_inverted_index.studied | 90 |
| abstract_inverted_index.theory. | 65 |
| abstract_inverted_index.torsion | 19 |
| abstract_inverted_index.algebra, | 30 |
| abstract_inverted_index.approach | 79 |
| abstract_inverted_index.bilinear | 25 |
| abstract_inverted_index.contains | 117 |
| abstract_inverted_index.deformed | 115 |
| abstract_inverted_index.post-Lie | 10, 41, 54, 88, 123 |
| abstract_inverted_index.sections | 105 |
| abstract_inverted_index.algebras, | 11 |
| abstract_inverted_index.algebras. | 100 |
| abstract_inverted_index.curvature | 21 |
| abstract_inverted_index.manifold, | 113 |
| abstract_inverted_index.operation | 26 |
| abstract_inverted_index.structure | 42, 74, 116, 125 |
| abstract_inverted_index.associated | 98 |
| abstract_inverted_index.conditions | 35 |
| abstract_inverted_index.introduced | 56, 126 |
| abstract_inverted_index.isomorphic | 85 |
| abstract_inverted_index.particular | 51 |
| abstract_inverted_index.preserved. | 44 |
| abstract_inverted_index.regularity | 63, 77 |
| abstract_inverted_index.structures | 64, 78 |
| abstract_inverted_index.deformation | 48, 69 |
| abstract_inverted_index.geometrical | 16, 131 |
| abstract_inverted_index.subalgebra, | 121 |
| abstract_inverted_index.deformations | 8 |
| abstract_inverted_index.compatibility | 34 |
| abstract_inverted_index.geometric-type | 7 |
| abstract_inverted_index.arXiv:1203.4738v3 | 128 |
| abstract_inverted_index.arXiv:2306.02484v3 | 58, 92 |
| abstract_inverted_index.finite-dimensional | 112 |
| abstract_inverted_index.arXiv:2103.04187v4, | 82 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5026999947 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |