Geometric structures in pseudo-random graphs Article Swipe
Thang Pham
,
Steven Senger
,
Michael Tait
,
Vu Thi Huong Thu
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.4153/s0008414x24000245
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.4153/s0008414x24000245
In this paper, we provide a general framework for counting geometric structures in pseudo-random graphs. As applications, our theorems recover and improve several results on the finite field analog of questions originally raised in the continuous setting. The results present interactions between discrete geometry, geometric measure theory, and graph theory.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4153/s0008414x24000245
- https://www.cambridge.org/core/services/aop-cambridge-core/content/view/38A35732B2A7C240549E7942AD43EE79/S0008414X24000245a.pdf/div-class-title-geometric-structures-in-pseudo-random-graphs-div.pdf
- OA Status
- bronze
- Cited By
- 2
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392863630
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392863630Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4153/s0008414x24000245Digital Object Identifier
- Title
-
Geometric structures in pseudo-random graphsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-15Full publication date if available
- Authors
-
Thang Pham, Steven Senger, Michael Tait, Vu Thi Huong ThuList of authors in order
- Landing page
-
https://doi.org/10.4153/s0008414x24000245Publisher landing page
- PDF URL
-
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/38A35732B2A7C240549E7942AD43EE79/S0008414X24000245a.pdf/div-class-title-geometric-structures-in-pseudo-random-graphs-div.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/38A35732B2A7C240549E7942AD43EE79/S0008414X24000245a.pdf/div-class-title-geometric-structures-in-pseudo-random-graphs-div.pdfDirect OA link when available
- Concepts
-
Mathematics, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392863630 |
|---|---|
| doi | https://doi.org/10.4153/s0008414x24000245 |
| ids.doi | https://doi.org/10.4153/s0008414x24000245 |
| ids.openalex | https://openalex.org/W4392863630 |
| fwci | 4.92035398 |
| type | article |
| title | Geometric structures in pseudo-random graphs |
| biblio.issue | 3 |
| biblio.volume | 77 |
| biblio.last_page | 1071 |
| biblio.first_page | 1041 |
| topics[0].id | https://openalex.org/T11329 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2607 |
| topics[0].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[0].display_name | Limits and Structures in Graph Theory |
| topics[1].id | https://openalex.org/T10304 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2608 |
| topics[1].subfield.display_name | Geometry and Topology |
| topics[1].display_name | Geometric and Algebraic Topology |
| topics[2].id | https://openalex.org/T12536 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9937000274658203 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Topological and Geometric Data Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8766465187072754 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C114614502 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3680746853351593 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[1].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.8766465187072754 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/combinatorics |
| keywords[1].score | 0.3680746853351593 |
| keywords[1].display_name | Combinatorics |
| language | en |
| locations[0].id | doi:10.4153/s0008414x24000245 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S131268793 |
| locations[0].source.issn | 0008-414X, 1496-4279 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0008-414X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Canadian Journal of Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310311721 |
| locations[0].source.host_organization_name | Cambridge University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| locations[0].source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| locations[0].license | |
| locations[0].pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/38A35732B2A7C240549E7942AD43EE79/S0008414X24000245a.pdf/div-class-title-geometric-structures-in-pseudo-random-graphs-div.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Canadian Journal of Mathematics |
| locations[0].landing_page_url | https://doi.org/10.4153/s0008414x24000245 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5001828232 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7600-7450 |
| authorships[0].author.display_name | Thang Pham |
| authorships[0].countries | VN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I177233841 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Science, Vietnam National University, Hanoi, Vietnam |
| authorships[0].institutions[0].id | https://openalex.org/I177233841 |
| authorships[0].institutions[0].ror | https://ror.org/02jmfj006 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I177233841 |
| authorships[0].institutions[0].country_code | VN |
| authorships[0].institutions[0].display_name | Vietnam National University, Hanoi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thang Pham |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | University of Science, Vietnam National University, Hanoi, Vietnam |
| authorships[1].author.id | https://openalex.org/A5020306330 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2912-4464 |
| authorships[1].author.display_name | Steven Senger |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I119942284 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics, Missouri State University, Springfield, MO, United States e-mail: |
| authorships[1].institutions[0].id | https://openalex.org/I119942284 |
| authorships[1].institutions[0].ror | https://ror.org/01d2sez20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I119942284 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Missouri State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Steven Senger |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics, Missouri State University, Springfield, MO, United States e-mail: |
| authorships[2].author.id | https://openalex.org/A5054251227 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3695-6883 |
| authorships[2].author.display_name | Michael Tait |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I7863295 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics, Villanova University, Villanova, PA, United States e-mail: |
| authorships[2].institutions[0].id | https://openalex.org/I7863295 |
| authorships[2].institutions[0].ror | https://ror.org/02g7kd627 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I7863295 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Villanova University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Michael Tait |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics and Statistics, Villanova University, Villanova, PA, United States e-mail: |
| authorships[3].author.id | https://openalex.org/A5086227622 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Vu Thi Huong Thu |
| authorships[3].countries | VN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I177233841 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Science, Vietnam National University, Hanoi, Vietnam e-mail: |
| authorships[3].institutions[0].id | https://openalex.org/I177233841 |
| authorships[3].institutions[0].ror | https://ror.org/02jmfj006 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I177233841 |
| authorships[3].institutions[0].country_code | VN |
| authorships[3].institutions[0].display_name | Vietnam National University, Hanoi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Vu Thi Huong Thu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Science, Vietnam National University, Hanoi, Vietnam e-mail: |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/38A35732B2A7C240549E7942AD43EE79/S0008414X24000245a.pdf/div-class-title-geometric-structures-in-pseudo-random-graphs-div.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Geometric structures in pseudo-random graphs |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11329 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2607 |
| primary_topic.subfield.display_name | Discrete Mathematics and Combinatorics |
| primary_topic.display_name | Limits and Structures in Graph Theory |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793, https://openalex.org/W4238204885 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4153/s0008414x24000245 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S131268793 |
| best_oa_location.source.issn | 0008-414X, 1496-4279 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0008-414X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Canadian Journal of Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311721 |
| best_oa_location.source.host_organization_name | Cambridge University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| best_oa_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/38A35732B2A7C240549E7942AD43EE79/S0008414X24000245a.pdf/div-class-title-geometric-structures-in-pseudo-random-graphs-div.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Canadian Journal of Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.4153/s0008414x24000245 |
| primary_location.id | doi:10.4153/s0008414x24000245 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S131268793 |
| primary_location.source.issn | 0008-414X, 1496-4279 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0008-414X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Canadian Journal of Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310311721 |
| primary_location.source.host_organization_name | Cambridge University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311721, https://openalex.org/P4310311702 |
| primary_location.source.host_organization_lineage_names | Cambridge University Press, University of Cambridge |
| primary_location.license | |
| primary_location.pdf_url | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/38A35732B2A7C240549E7942AD43EE79/S0008414X24000245a.pdf/div-class-title-geometric-structures-in-pseudo-random-graphs-div.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Canadian Journal of Mathematics |
| primary_location.landing_page_url | https://doi.org/10.4153/s0008414x24000245 |
| publication_date | 2024-03-15 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1604193998, https://openalex.org/W2962678190, https://openalex.org/W3097670291, https://openalex.org/W2167283930, https://openalex.org/W2016044354, https://openalex.org/W2017331491, https://openalex.org/W4313443411, https://openalex.org/W2081163625, https://openalex.org/W2962897684, https://openalex.org/W3205023862, https://openalex.org/W2963690660, https://openalex.org/W3155802636, https://openalex.org/W6701848958, https://openalex.org/W4220818823, https://openalex.org/W2996864688, https://openalex.org/W2963132433, https://openalex.org/W2964335955, https://openalex.org/W3096255892, https://openalex.org/W1990524943, https://openalex.org/W2794890110, https://openalex.org/W2774180356, https://openalex.org/W1997424790, https://openalex.org/W1639593279, https://openalex.org/W2966366763, https://openalex.org/W1812624765, https://openalex.org/W2026981546, https://openalex.org/W6659777525, https://openalex.org/W4246632628, https://openalex.org/W2054037953, https://openalex.org/W3122060294, https://openalex.org/W2037774402, https://openalex.org/W2330659347, https://openalex.org/W3123425152, https://openalex.org/W2479782962, https://openalex.org/W4233558042 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 6 |
| abstract_inverted_index.As | 16 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.in | 13, 34 |
| abstract_inverted_index.of | 30 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.we | 4 |
| abstract_inverted_index.The | 38 |
| abstract_inverted_index.and | 21, 48 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.our | 18 |
| abstract_inverted_index.the | 26, 35 |
| abstract_inverted_index.this | 2 |
| abstract_inverted_index.field | 28 |
| abstract_inverted_index.graph | 49 |
| abstract_inverted_index.analog | 29 |
| abstract_inverted_index.finite | 27 |
| abstract_inverted_index.paper, | 3 |
| abstract_inverted_index.raised | 33 |
| abstract_inverted_index.between | 42 |
| abstract_inverted_index.general | 7 |
| abstract_inverted_index.graphs. | 15 |
| abstract_inverted_index.improve | 22 |
| abstract_inverted_index.measure | 46 |
| abstract_inverted_index.present | 40 |
| abstract_inverted_index.provide | 5 |
| abstract_inverted_index.recover | 20 |
| abstract_inverted_index.results | 24, 39 |
| abstract_inverted_index.several | 23 |
| abstract_inverted_index.theory, | 47 |
| abstract_inverted_index.theory. | 50 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.counting | 10 |
| abstract_inverted_index.discrete | 43 |
| abstract_inverted_index.setting. | 37 |
| abstract_inverted_index.theorems | 19 |
| abstract_inverted_index.framework | 8 |
| abstract_inverted_index.geometric | 11, 45 |
| abstract_inverted_index.geometry, | 44 |
| abstract_inverted_index.questions | 31 |
| abstract_inverted_index.continuous | 36 |
| abstract_inverted_index.originally | 32 |
| abstract_inverted_index.structures | 12 |
| abstract_inverted_index.interactions | 41 |
| abstract_inverted_index.applications, | 17 |
| abstract_inverted_index.pseudo-random | 14 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5001828232 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I177233841 |
| citation_normalized_percentile.value | 0.88596491 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |