Geometry-Aware Enhanced Mutual-Supervised Point Elimination with Overlapping Mask Contrastive Learning for Partitial Point Cloud Registration Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/electronics13204074
Point cloud registration is one of the fundamental tasks in computer vision, but faces challenges under low overlap conditions. Recent approaches use transformers and overlapping masks to improve perception, but mask learning only considers Euclidean distances between features, ignores mismatches caused by fuzzy geometric structures, and is often computationally inefficient. To address these issues, we introduce a novel matching framework. Firstly, we fuse adaptive graph convolution with PPF features to obtain rich feature perception. Subsequently, we construct a PGT framework that uses GeoTransformer and combines it with location information encoding to enhance the geometry perception between source and target clouds. In addition, we improve the visibility of overlapping regions through information exchange and the AIS module, aiming at subsequent keypoint extraction, preserving points with distinct geometrical structures while suppressing the influence of non-overlapping regions to improve computational efficiency. Finally, the mask is refined through contrast learning to preserve geometric and distance similarity, which helps to compute the transformation parameters more accurately. We have conducted comprehensive experiments on synthetic and real-world scene datasets, demonstrating superior registration performance compared to recent deep learning methods. Our approach shows remarkable improvements of 68.21% in RRMSE and 76.31% in tRMSE on synthetic data, while also excelling in real-world scenarios with enhancements of 76.46% in RRMSE and 45.16% in tRMSE.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics13204074
- OA Status
- gold
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403451909
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403451909Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics13204074Digital Object Identifier
- Title
-
Geometry-Aware Enhanced Mutual-Supervised Point Elimination with Overlapping Mask Contrastive Learning for Partitial Point Cloud RegistrationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-16Full publication date if available
- Authors
-
Yue Dai, Shuilin Wang, Chunfeng Shao, Heng Zhang, Fucang JiaList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics13204074Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/electronics13204074Direct OA link when available
- Concepts
-
Point cloud, Point (geometry), Artificial intelligence, Computer science, Geometry, Computer vision, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403451909 |
|---|---|
| doi | https://doi.org/10.3390/electronics13204074 |
| ids.doi | https://doi.org/10.3390/electronics13204074 |
| ids.openalex | https://openalex.org/W4403451909 |
| fwci | 0.0 |
| type | article |
| title | Geometry-Aware Enhanced Mutual-Supervised Point Elimination with Overlapping Mask Contrastive Learning for Partitial Point Cloud Registration |
| biblio.issue | 20 |
| biblio.volume | 13 |
| biblio.last_page | 4074 |
| biblio.first_page | 4074 |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T11211 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1907 |
| topics[1].subfield.display_name | Geology |
| topics[1].display_name | 3D Surveying and Cultural Heritage |
| topics[2].id | https://openalex.org/T10719 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | 3D Shape Modeling and Analysis |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C131979681 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8786112070083618 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[0].display_name | Point cloud |
| concepts[1].id | https://openalex.org/C28719098 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6639666557312012 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[1].display_name | Point (geometry) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5726238489151001 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5423532128334045 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2524010 |
| concepts[4].level | 1 |
| concepts[4].score | 0.47595617175102234 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[4].display_name | Geometry |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46769312024116516 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.23127597570419312 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/point-cloud |
| keywords[0].score | 0.8786112070083618 |
| keywords[0].display_name | Point cloud |
| keywords[1].id | https://openalex.org/keywords/point |
| keywords[1].score | 0.6639666557312012 |
| keywords[1].display_name | Point (geometry) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5726238489151001 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5423532128334045 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/geometry |
| keywords[4].score | 0.47595617175102234 |
| keywords[4].display_name | Geometry |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.46769312024116516 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.23127597570419312 |
| keywords[6].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/electronics13204074 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics13204074 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5113373759 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yue Dai |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[0].institutions[0].id | https://openalex.org/I9224756 |
| authorships[0].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yue Dai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[1].author.id | https://openalex.org/A5043271314 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shuilin Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shuilin Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[2].author.id | https://openalex.org/A5111243550 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Chunfeng Shao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[2].institutions[0].id | https://openalex.org/I9224756 |
| authorships[2].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Northeastern University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chunfeng Shao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[3].author.id | https://openalex.org/A5115595886 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-6751-7062 |
| authorships[3].author.display_name | Heng Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Robotics Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[3].institutions[0].id | https://openalex.org/I9224756 |
| authorships[3].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Heng Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Robotics Science and Engineering, Northeastern University, Shenyang 110819, China |
| authorships[4].author.id | https://openalex.org/A5091855300 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0075-979X |
| authorships[4].author.display_name | Fucang Jia |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].affiliations[0].raw_affiliation_string | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].affiliations[1].raw_affiliation_string | The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[4].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Fucang Jia |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/electronics13204074 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Geometry-Aware Enhanced Mutual-Supervised Point Elimination with Overlapping Mask Contrastive Learning for Partitial Point Cloud Registration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics13204074 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics13204074 |
| primary_location.id | doi:10.3390/electronics13204074 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics13204074 |
| publication_date | 2024-10-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2122122381, https://openalex.org/W2028936041, https://openalex.org/W4294691680, https://openalex.org/W4402563824, https://openalex.org/W2099940712, https://openalex.org/W2005300825, https://openalex.org/W2953303875, https://openalex.org/W2150066425, https://openalex.org/W4402353544, https://openalex.org/W2895180691, https://openalex.org/W2160821342, https://openalex.org/W2792346134, https://openalex.org/W2085261163, https://openalex.org/W2049981393, https://openalex.org/W2097832352, https://openalex.org/W2944143243, https://openalex.org/W2971088236, https://openalex.org/W3108059345, https://openalex.org/W3013243617, https://openalex.org/W3177280664, https://openalex.org/W3216353509, https://openalex.org/W4388543778, https://openalex.org/W4328029499, https://openalex.org/W2963264709, https://openalex.org/W3133797311, https://openalex.org/W2962941647, https://openalex.org/W1990283121, https://openalex.org/W4226373316, https://openalex.org/W2938428612, https://openalex.org/W2950642167, https://openalex.org/W2118877769, https://openalex.org/W3034295752, https://openalex.org/W4214521144, https://openalex.org/W4376131678, https://openalex.org/W3166855724, https://openalex.org/W6640300118, https://openalex.org/W2566265240, https://openalex.org/W6797082206, https://openalex.org/W3035338950, https://openalex.org/W3172602550 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 56, 77 |
| abstract_inverted_index.In | 100 |
| abstract_inverted_index.To | 50 |
| abstract_inverted_index.We | 161 |
| abstract_inverted_index.at | 117 |
| abstract_inverted_index.by | 41 |
| abstract_inverted_index.in | 9, 189, 193, 201, 208, 212 |
| abstract_inverted_index.is | 3, 46, 141 |
| abstract_inverted_index.it | 85 |
| abstract_inverted_index.of | 5, 106, 131, 187, 206 |
| abstract_inverted_index.on | 166, 195 |
| abstract_inverted_index.to | 26, 69, 90, 134, 146, 154, 177 |
| abstract_inverted_index.we | 54, 61, 75, 102 |
| abstract_inverted_index.AIS | 114 |
| abstract_inverted_index.Our | 182 |
| abstract_inverted_index.PGT | 78 |
| abstract_inverted_index.PPF | 67 |
| abstract_inverted_index.and | 23, 45, 83, 97, 112, 149, 168, 191, 210 |
| abstract_inverted_index.but | 12, 29 |
| abstract_inverted_index.low | 16 |
| abstract_inverted_index.one | 4 |
| abstract_inverted_index.the | 6, 92, 104, 113, 129, 139, 156 |
| abstract_inverted_index.use | 21 |
| abstract_inverted_index.also | 199 |
| abstract_inverted_index.deep | 179 |
| abstract_inverted_index.fuse | 62 |
| abstract_inverted_index.have | 162 |
| abstract_inverted_index.mask | 30, 140 |
| abstract_inverted_index.more | 159 |
| abstract_inverted_index.only | 32 |
| abstract_inverted_index.rich | 71 |
| abstract_inverted_index.that | 80 |
| abstract_inverted_index.uses | 81 |
| abstract_inverted_index.with | 66, 86, 123, 204 |
| abstract_inverted_index.Point | 0 |
| abstract_inverted_index.RRMSE | 190, 209 |
| abstract_inverted_index.cloud | 1 |
| abstract_inverted_index.data, | 197 |
| abstract_inverted_index.faces | 13 |
| abstract_inverted_index.fuzzy | 42 |
| abstract_inverted_index.graph | 64 |
| abstract_inverted_index.helps | 153 |
| abstract_inverted_index.masks | 25 |
| abstract_inverted_index.novel | 57 |
| abstract_inverted_index.often | 47 |
| abstract_inverted_index.scene | 170 |
| abstract_inverted_index.shows | 184 |
| abstract_inverted_index.tRMSE | 194 |
| abstract_inverted_index.tasks | 8 |
| abstract_inverted_index.these | 52 |
| abstract_inverted_index.under | 15 |
| abstract_inverted_index.which | 152 |
| abstract_inverted_index.while | 127, 198 |
| abstract_inverted_index.45.16% | 211 |
| abstract_inverted_index.68.21% | 188 |
| abstract_inverted_index.76.31% | 192 |
| abstract_inverted_index.76.46% | 207 |
| abstract_inverted_index.Recent | 19 |
| abstract_inverted_index.aiming | 116 |
| abstract_inverted_index.caused | 40 |
| abstract_inverted_index.obtain | 70 |
| abstract_inverted_index.points | 122 |
| abstract_inverted_index.recent | 178 |
| abstract_inverted_index.source | 96 |
| abstract_inverted_index.tRMSE. | 213 |
| abstract_inverted_index.target | 98 |
| abstract_inverted_index.address | 51 |
| abstract_inverted_index.between | 36, 95 |
| abstract_inverted_index.clouds. | 99 |
| abstract_inverted_index.compute | 155 |
| abstract_inverted_index.enhance | 91 |
| abstract_inverted_index.feature | 72 |
| abstract_inverted_index.ignores | 38 |
| abstract_inverted_index.improve | 27, 103, 135 |
| abstract_inverted_index.issues, | 53 |
| abstract_inverted_index.module, | 115 |
| abstract_inverted_index.overlap | 17 |
| abstract_inverted_index.refined | 142 |
| abstract_inverted_index.regions | 108, 133 |
| abstract_inverted_index.through | 109, 143 |
| abstract_inverted_index.vision, | 11 |
| abstract_inverted_index.Finally, | 138 |
| abstract_inverted_index.Firstly, | 60 |
| abstract_inverted_index.adaptive | 63 |
| abstract_inverted_index.approach | 183 |
| abstract_inverted_index.combines | 84 |
| abstract_inverted_index.compared | 176 |
| abstract_inverted_index.computer | 10 |
| abstract_inverted_index.contrast | 144 |
| abstract_inverted_index.distance | 150 |
| abstract_inverted_index.distinct | 124 |
| abstract_inverted_index.encoding | 89 |
| abstract_inverted_index.exchange | 111 |
| abstract_inverted_index.features | 68 |
| abstract_inverted_index.geometry | 93 |
| abstract_inverted_index.keypoint | 119 |
| abstract_inverted_index.learning | 31, 145, 180 |
| abstract_inverted_index.location | 87 |
| abstract_inverted_index.matching | 58 |
| abstract_inverted_index.methods. | 181 |
| abstract_inverted_index.preserve | 147 |
| abstract_inverted_index.superior | 173 |
| abstract_inverted_index.Euclidean | 34 |
| abstract_inverted_index.addition, | 101 |
| abstract_inverted_index.conducted | 163 |
| abstract_inverted_index.considers | 33 |
| abstract_inverted_index.construct | 76 |
| abstract_inverted_index.datasets, | 171 |
| abstract_inverted_index.distances | 35 |
| abstract_inverted_index.excelling | 200 |
| abstract_inverted_index.features, | 37 |
| abstract_inverted_index.framework | 79 |
| abstract_inverted_index.geometric | 43, 148 |
| abstract_inverted_index.influence | 130 |
| abstract_inverted_index.introduce | 55 |
| abstract_inverted_index.scenarios | 203 |
| abstract_inverted_index.synthetic | 167, 196 |
| abstract_inverted_index.approaches | 20 |
| abstract_inverted_index.challenges | 14 |
| abstract_inverted_index.framework. | 59 |
| abstract_inverted_index.mismatches | 39 |
| abstract_inverted_index.parameters | 158 |
| abstract_inverted_index.perception | 94 |
| abstract_inverted_index.preserving | 121 |
| abstract_inverted_index.real-world | 169, 202 |
| abstract_inverted_index.remarkable | 185 |
| abstract_inverted_index.structures | 126 |
| abstract_inverted_index.subsequent | 118 |
| abstract_inverted_index.visibility | 105 |
| abstract_inverted_index.accurately. | 160 |
| abstract_inverted_index.conditions. | 18 |
| abstract_inverted_index.convolution | 65 |
| abstract_inverted_index.efficiency. | 137 |
| abstract_inverted_index.experiments | 165 |
| abstract_inverted_index.extraction, | 120 |
| abstract_inverted_index.fundamental | 7 |
| abstract_inverted_index.geometrical | 125 |
| abstract_inverted_index.information | 88, 110 |
| abstract_inverted_index.overlapping | 24, 107 |
| abstract_inverted_index.perception, | 28 |
| abstract_inverted_index.perception. | 73 |
| abstract_inverted_index.performance | 175 |
| abstract_inverted_index.similarity, | 151 |
| abstract_inverted_index.structures, | 44 |
| abstract_inverted_index.suppressing | 128 |
| abstract_inverted_index.enhancements | 205 |
| abstract_inverted_index.improvements | 186 |
| abstract_inverted_index.inefficient. | 49 |
| abstract_inverted_index.registration | 2, 174 |
| abstract_inverted_index.transformers | 22 |
| abstract_inverted_index.Subsequently, | 74 |
| abstract_inverted_index.comprehensive | 164 |
| abstract_inverted_index.computational | 136 |
| abstract_inverted_index.demonstrating | 172 |
| abstract_inverted_index.GeoTransformer | 82 |
| abstract_inverted_index.transformation | 157 |
| abstract_inverted_index.computationally | 48 |
| abstract_inverted_index.non-overlapping | 132 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5091855300 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.12058205 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |