Geospatial Distribution of Pedestrian Injuries and Associated Factors in the Greater Kampala Metropolitan Area, Uganda Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.37432/jieph.2020.3.1.22
Background: Road traffic injuries (RTIs) are the leading cause of death among 15-29-year olds, of which 22% are pedestrians. In Uganda, pedestrians constitute 43% of RTIs. Over 52% of these injuries occur in Greater Kampala Metropolitan Area (GKMA). However, information on geospatial distribution of RTIs involving pedestrians and associated factors is scanty. We established the geospatial distribution of pedestrian injuries and associated factors in GKMA, Uganda. Methods: We conducted a mixed methods cross sectional study in three districts of GKMA. We used a structured questionnaire to interview 332 injured pedestrians at ten purposively selected health facilities from May to July 2017. We used a modified Australian Walkability Audit Tool to assess road characteristics and videography to capture road user behaviour at reported injury sites. Injury location (outcome) was categorized into three locations according to primary land use: residential areas, commercial/business areas and bar & entertainment areas. The injury hotspots were then mapped out using Quantum Geographic Information System (QGIS). Multinomial logistic regression was used to identify factors associated with injury location and adjusted prevalence ratios (APR) reported at 95% confidence interval. Results: Males represented 66.5% (221/332) of the sample. Pedestrian injuries were most prevalent among 15-29-year olds (45.5%, 151/332). Most (47.2%, 157/332) injuries occurred in commercial and business areas. Namasuba-Zana (13%, 43/332) followed by Nakawa-Kireka on Jinja road (9.7%, 32/332) had the highest number of injuries. Presence of speed humps was protective (APR=0.13, 95%CI 0.01-0.93). However, zebra crossings (APR=6.41, 95% CI: 1.14-36.08) and clear traffic (APR=6.39, 95%CI: 2.75-14.82) were associated with high prevalence of pedestrian injuries. Conclusion: Presence of speed humps was safer for pedestrians but zebra crossings and clear traffic had more than 6-fold risk for injuries. Findings suggest that constructing speed humps on the roads in busy areas and sensitizing motorists to respect zebra crossings could reduce pedestrian injuries.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.37432/jieph.2020.3.1.22
- OA Status
- diamond
- Cited By
- 4
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3010138626
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3010138626Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.37432/jieph.2020.3.1.22Digital Object Identifier
- Title
-
Geospatial Distribution of Pedestrian Injuries and Associated Factors in the Greater Kampala Metropolitan Area, UgandaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-17Full publication date if available
- Authors
-
Frederick Oporia, Nazarius Mbona Tumwesigye, John Bosco Isunju, Rebecca Nuwematsiko, Abdulgafoor Bachani, Angela Kisakye, Mary Nakafeero, Qingfeng Li, Fiston Muneza, George Kiwanuka, Nino Paichadze, Olive KobusingyeList of authors in order
- Landing page
-
https://doi.org/10.37432/jieph.2020.3.1.22Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.37432/jieph.2020.3.1.22Direct OA link when available
- Concepts
-
Geospatial analysis, Metropolitan area, Pedestrian, Geography, Distribution (mathematics), Environmental health, Poison control, Injury prevention, Transport engineering, Socioeconomics, Medicine, Cartography, Engineering, Sociology, Mathematics, Archaeology, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3010138626 |
|---|---|
| doi | https://doi.org/10.37432/jieph.2020.3.1.22 |
| ids.doi | https://doi.org/10.37432/jieph.2020.3.1.22 |
| ids.mag | 3010138626 |
| ids.openalex | https://openalex.org/W3010138626 |
| fwci | 0.38452044 |
| type | article |
| title | Geospatial Distribution of Pedestrian Injuries and Associated Factors in the Greater Kampala Metropolitan Area, Uganda |
| biblio.issue | 1 |
| biblio.volume | 3 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10370 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2213 |
| topics[0].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[0].display_name | Traffic and Road Safety |
| topics[1].id | https://openalex.org/T10298 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Urban Transport and Accessibility |
| topics[2].id | https://openalex.org/T11824 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9850999712944031 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2739 |
| topics[2].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[2].display_name | Injury Epidemiology and Prevention |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C9770341 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8503778576850891 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[0].display_name | Geospatial analysis |
| concepts[1].id | https://openalex.org/C158739034 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8500372171401978 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1907114 |
| concepts[1].display_name | Metropolitan area |
| concepts[2].id | https://openalex.org/C2777113093 |
| concepts[2].level | 2 |
| concepts[2].score | 0.8426344990730286 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q221488 |
| concepts[2].display_name | Pedestrian |
| concepts[3].id | https://openalex.org/C205649164 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6657308340072632 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[3].display_name | Geography |
| concepts[4].id | https://openalex.org/C110121322 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5855138897895813 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q865811 |
| concepts[4].display_name | Distribution (mathematics) |
| concepts[5].id | https://openalex.org/C99454951 |
| concepts[5].level | 1 |
| concepts[5].score | 0.513676106929779 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[5].display_name | Environmental health |
| concepts[6].id | https://openalex.org/C3017944768 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4817054867744446 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1450463 |
| concepts[6].display_name | Poison control |
| concepts[7].id | https://openalex.org/C190385971 |
| concepts[7].level | 3 |
| concepts[7].score | 0.42322754859924316 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q373494 |
| concepts[7].display_name | Injury prevention |
| concepts[8].id | https://openalex.org/C22212356 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33341357111930847 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[8].display_name | Transport engineering |
| concepts[9].id | https://openalex.org/C45355965 |
| concepts[9].level | 1 |
| concepts[9].score | 0.330633282661438 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1643441 |
| concepts[9].display_name | Socioeconomics |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.32707780599594116 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C58640448 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2796069383621216 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[11].display_name | Cartography |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09650769829750061 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C144024400 |
| concepts[13].level | 0 |
| concepts[13].score | 0.05761954188346863 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[13].display_name | Sociology |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C166957645 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[15].display_name | Archaeology |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/geospatial-analysis |
| keywords[0].score | 0.8503778576850891 |
| keywords[0].display_name | Geospatial analysis |
| keywords[1].id | https://openalex.org/keywords/metropolitan-area |
| keywords[1].score | 0.8500372171401978 |
| keywords[1].display_name | Metropolitan area |
| keywords[2].id | https://openalex.org/keywords/pedestrian |
| keywords[2].score | 0.8426344990730286 |
| keywords[2].display_name | Pedestrian |
| keywords[3].id | https://openalex.org/keywords/geography |
| keywords[3].score | 0.6657308340072632 |
| keywords[3].display_name | Geography |
| keywords[4].id | https://openalex.org/keywords/distribution |
| keywords[4].score | 0.5855138897895813 |
| keywords[4].display_name | Distribution (mathematics) |
| keywords[5].id | https://openalex.org/keywords/environmental-health |
| keywords[5].score | 0.513676106929779 |
| keywords[5].display_name | Environmental health |
| keywords[6].id | https://openalex.org/keywords/poison-control |
| keywords[6].score | 0.4817054867744446 |
| keywords[6].display_name | Poison control |
| keywords[7].id | https://openalex.org/keywords/injury-prevention |
| keywords[7].score | 0.42322754859924316 |
| keywords[7].display_name | Injury prevention |
| keywords[8].id | https://openalex.org/keywords/transport-engineering |
| keywords[8].score | 0.33341357111930847 |
| keywords[8].display_name | Transport engineering |
| keywords[9].id | https://openalex.org/keywords/socioeconomics |
| keywords[9].score | 0.330633282661438 |
| keywords[9].display_name | Socioeconomics |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.32707780599594116 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/cartography |
| keywords[11].score | 0.2796069383621216 |
| keywords[11].display_name | Cartography |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.09650769829750061 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/sociology |
| keywords[13].score | 0.05761954188346863 |
| keywords[13].display_name | Sociology |
| language | en |
| locations[0].id | doi:10.37432/jieph.2020.3.1.22 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210235220 |
| locations[0].source.issn | 2664-2824 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2664-2824 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Interventional Epidemiology and Public Health |
| locations[0].source.host_organization | https://openalex.org/P4310311037 |
| locations[0].source.host_organization_name | African Field Epidemiology Network |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311037 |
| locations[0].source.host_organization_lineage_names | African Field Epidemiology Network |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Interventional Epidemiology and Public Health |
| locations[0].landing_page_url | https://doi.org/10.37432/jieph.2020.3.1.22 |
| locations[1].id | pmh:oai:doaj.org/article:0bb8a33611944a949ba1d51434c1f744 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Interventional Epidemiology and Public Health, Vol 3, Iss 1, Pp 1-19 (2020) |
| locations[1].landing_page_url | https://doi.org/10.37432/JIEPH.2020.3.1.22 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5041247990 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6280-8919 |
| authorships[0].author.display_name | Frederick Oporia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Frederick Oporia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037659993 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7085-8780 |
| authorships[1].author.display_name | Nazarius Mbona Tumwesigye |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nazarius Mbona Tumwesigye |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5075415903 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7396-7851 |
| authorships[2].author.display_name | John Bosco Isunju |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | John Bosco Isunju |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021588621 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8076-362X |
| authorships[3].author.display_name | Rebecca Nuwematsiko |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rebecca Nuwematsiko |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5079459920 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Abdulgafoor Bachani |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Abdulgafoor Mahmood Bachani |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5077007161 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2222-9450 |
| authorships[5].author.display_name | Angela Kisakye |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Angela Nakanwagi Kisakye |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5036857594 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Mary Nakafeero |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mary Nakafeero |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100349228 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6390-6921 |
| authorships[7].author.display_name | Qingfeng Li |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Qingfeng Li |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5005202920 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Fiston Muneza |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Fiston Muneza |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5025768192 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-6876-837X |
| authorships[9].author.display_name | George Kiwanuka |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | George Kiwanuka |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5051259870 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-8263-9881 |
| authorships[10].author.display_name | Nino Paichadze |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Nino Paichadze |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5024354334 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-2413-599X |
| authorships[11].author.display_name | Olive Kobusingye |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Olive Kobusingye |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.37432/jieph.2020.3.1.22 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Geospatial Distribution of Pedestrian Injuries and Associated Factors in the Greater Kampala Metropolitan Area, Uganda |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10370 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2213 |
| primary_topic.subfield.display_name | Safety, Risk, Reliability and Quality |
| primary_topic.display_name | Traffic and Road Safety |
| related_works | https://openalex.org/W4212929323, https://openalex.org/W2045046253, https://openalex.org/W2000995042, https://openalex.org/W2494740635, https://openalex.org/W1632599465, https://openalex.org/W3177269507, https://openalex.org/W1563545158, https://openalex.org/W2115206115, https://openalex.org/W2091545482, https://openalex.org/W2379499532 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.37432/jieph.2020.3.1.22 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210235220 |
| best_oa_location.source.issn | 2664-2824 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2664-2824 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Interventional Epidemiology and Public Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310311037 |
| best_oa_location.source.host_organization_name | African Field Epidemiology Network |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311037 |
| best_oa_location.source.host_organization_lineage_names | African Field Epidemiology Network |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Interventional Epidemiology and Public Health |
| best_oa_location.landing_page_url | https://doi.org/10.37432/jieph.2020.3.1.22 |
| primary_location.id | doi:10.37432/jieph.2020.3.1.22 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210235220 |
| primary_location.source.issn | 2664-2824 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2664-2824 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Interventional Epidemiology and Public Health |
| primary_location.source.host_organization | https://openalex.org/P4310311037 |
| primary_location.source.host_organization_name | African Field Epidemiology Network |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311037 |
| primary_location.source.host_organization_lineage_names | African Field Epidemiology Network |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Interventional Epidemiology and Public Health |
| primary_location.landing_page_url | https://doi.org/10.37432/jieph.2020.3.1.22 |
| publication_date | 2020-01-17 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2076884345, https://openalex.org/W2012541460, https://openalex.org/W2102292657, https://openalex.org/W2484022646, https://openalex.org/W2017071372, https://openalex.org/W2095374304, https://openalex.org/W2128290396, https://openalex.org/W1910708408, https://openalex.org/W2033351591, https://openalex.org/W2169560135, https://openalex.org/W2043864789, https://openalex.org/W2017513419, https://openalex.org/W2042324646, https://openalex.org/W2283592911, https://openalex.org/W2066418233, https://openalex.org/W1979290264, https://openalex.org/W1987614881, https://openalex.org/W2098611050, https://openalex.org/W1969813114, https://openalex.org/W2782006619 |
| referenced_works_count | 20 |
| abstract_inverted_index.& | 143 |
| abstract_inverted_index.a | 69, 82, 103 |
| abstract_inverted_index.In | 19 |
| abstract_inverted_index.We | 52, 67, 80, 101 |
| abstract_inverted_index.at | 90, 120, 177 |
| abstract_inverted_index.by | 213 |
| abstract_inverted_index.in | 32, 63, 75, 204, 287 |
| abstract_inverted_index.is | 50 |
| abstract_inverted_index.of | 9, 14, 24, 28, 43, 57, 78, 186, 224, 227, 253, 258 |
| abstract_inverted_index.on | 40, 215, 284 |
| abstract_inverted_index.to | 85, 98, 109, 115, 133, 164, 293 |
| abstract_inverted_index.22% | 16 |
| abstract_inverted_index.332 | 87 |
| abstract_inverted_index.43% | 23 |
| abstract_inverted_index.52% | 27 |
| abstract_inverted_index.95% | 178, 239 |
| abstract_inverted_index.CI: | 240 |
| abstract_inverted_index.May | 97 |
| abstract_inverted_index.The | 146 |
| abstract_inverted_index.and | 47, 60, 113, 141, 171, 206, 242, 268, 290 |
| abstract_inverted_index.are | 5, 17 |
| abstract_inverted_index.bar | 142 |
| abstract_inverted_index.but | 265 |
| abstract_inverted_index.for | 263, 276 |
| abstract_inverted_index.had | 220, 271 |
| abstract_inverted_index.out | 152 |
| abstract_inverted_index.ten | 91 |
| abstract_inverted_index.the | 6, 54, 187, 221, 285 |
| abstract_inverted_index.was | 127, 162, 230, 261 |
| abstract_inverted_index.Area | 36 |
| abstract_inverted_index.July | 99 |
| abstract_inverted_index.Most | 199 |
| abstract_inverted_index.Over | 26 |
| abstract_inverted_index.RTIs | 44 |
| abstract_inverted_index.Road | 1 |
| abstract_inverted_index.Tool | 108 |
| abstract_inverted_index.busy | 288 |
| abstract_inverted_index.from | 96 |
| abstract_inverted_index.high | 251 |
| abstract_inverted_index.into | 129 |
| abstract_inverted_index.land | 135 |
| abstract_inverted_index.more | 272 |
| abstract_inverted_index.most | 192 |
| abstract_inverted_index.olds | 196 |
| abstract_inverted_index.risk | 275 |
| abstract_inverted_index.road | 111, 117, 217 |
| abstract_inverted_index.than | 273 |
| abstract_inverted_index.that | 280 |
| abstract_inverted_index.then | 150 |
| abstract_inverted_index.use: | 136 |
| abstract_inverted_index.used | 81, 102, 163 |
| abstract_inverted_index.user | 118 |
| abstract_inverted_index.were | 149, 191, 248 |
| abstract_inverted_index.with | 168, 250 |
| abstract_inverted_index.(13%, | 210 |
| abstract_inverted_index.(APR) | 175 |
| abstract_inverted_index.2017. | 100 |
| abstract_inverted_index.66.5% | 184 |
| abstract_inverted_index.95%CI | 233 |
| abstract_inverted_index.Audit | 107 |
| abstract_inverted_index.GKMA, | 64 |
| abstract_inverted_index.GKMA. | 79 |
| abstract_inverted_index.Jinja | 216 |
| abstract_inverted_index.Males | 182 |
| abstract_inverted_index.RTIs. | 25 |
| abstract_inverted_index.among | 11, 194 |
| abstract_inverted_index.areas | 140, 289 |
| abstract_inverted_index.cause | 8 |
| abstract_inverted_index.clear | 243, 269 |
| abstract_inverted_index.could | 297 |
| abstract_inverted_index.cross | 72 |
| abstract_inverted_index.death | 10 |
| abstract_inverted_index.humps | 229, 260, 283 |
| abstract_inverted_index.mixed | 70 |
| abstract_inverted_index.occur | 31 |
| abstract_inverted_index.olds, | 13 |
| abstract_inverted_index.roads | 286 |
| abstract_inverted_index.safer | 262 |
| abstract_inverted_index.speed | 228, 259, 282 |
| abstract_inverted_index.study | 74 |
| abstract_inverted_index.these | 29 |
| abstract_inverted_index.three | 76, 130 |
| abstract_inverted_index.using | 153 |
| abstract_inverted_index.which | 15 |
| abstract_inverted_index.zebra | 236, 266, 295 |
| abstract_inverted_index.(9.7%, | 218 |
| abstract_inverted_index.(RTIs) | 4 |
| abstract_inverted_index.6-fold | 274 |
| abstract_inverted_index.95%CI: | 246 |
| abstract_inverted_index.Injury | 124 |
| abstract_inverted_index.System | 157 |
| abstract_inverted_index.areas, | 138 |
| abstract_inverted_index.areas. | 145, 208 |
| abstract_inverted_index.assess | 110 |
| abstract_inverted_index.health | 94 |
| abstract_inverted_index.injury | 122, 147, 169 |
| abstract_inverted_index.mapped | 151 |
| abstract_inverted_index.number | 223 |
| abstract_inverted_index.ratios | 174 |
| abstract_inverted_index.reduce | 298 |
| abstract_inverted_index.sites. | 123 |
| abstract_inverted_index.(45.5%, | 197 |
| abstract_inverted_index.(47.2%, | 200 |
| abstract_inverted_index.(GKMA). | 37 |
| abstract_inverted_index.(QGIS). | 158 |
| abstract_inverted_index.32/332) | 219 |
| abstract_inverted_index.43/332) | 211 |
| abstract_inverted_index.Greater | 33 |
| abstract_inverted_index.Kampala | 34 |
| abstract_inverted_index.Quantum | 154 |
| abstract_inverted_index.Uganda, | 20 |
| abstract_inverted_index.Uganda. | 65 |
| abstract_inverted_index.capture | 116 |
| abstract_inverted_index.factors | 49, 62, 166 |
| abstract_inverted_index.highest | 222 |
| abstract_inverted_index.injured | 88 |
| abstract_inverted_index.leading | 7 |
| abstract_inverted_index.methods | 71 |
| abstract_inverted_index.primary | 134 |
| abstract_inverted_index.respect | 294 |
| abstract_inverted_index.sample. | 188 |
| abstract_inverted_index.scanty. | 51 |
| abstract_inverted_index.suggest | 279 |
| abstract_inverted_index.traffic | 2, 244, 270 |
| abstract_inverted_index.157/332) | 201 |
| abstract_inverted_index.Findings | 278 |
| abstract_inverted_index.However, | 38, 235 |
| abstract_inverted_index.Methods: | 66 |
| abstract_inverted_index.Presence | 226, 257 |
| abstract_inverted_index.Results: | 181 |
| abstract_inverted_index.adjusted | 172 |
| abstract_inverted_index.business | 207 |
| abstract_inverted_index.followed | 212 |
| abstract_inverted_index.hotspots | 148 |
| abstract_inverted_index.identify | 165 |
| abstract_inverted_index.injuries | 3, 30, 59, 190, 202 |
| abstract_inverted_index.location | 125, 170 |
| abstract_inverted_index.logistic | 160 |
| abstract_inverted_index.modified | 104 |
| abstract_inverted_index.occurred | 203 |
| abstract_inverted_index.reported | 121, 176 |
| abstract_inverted_index.selected | 93 |
| abstract_inverted_index.(221/332) | 185 |
| abstract_inverted_index.(outcome) | 126 |
| abstract_inverted_index.151/332). | 198 |
| abstract_inverted_index.according | 132 |
| abstract_inverted_index.behaviour | 119 |
| abstract_inverted_index.conducted | 68 |
| abstract_inverted_index.crossings | 237, 267, 296 |
| abstract_inverted_index.districts | 77 |
| abstract_inverted_index.injuries. | 225, 255, 277, 300 |
| abstract_inverted_index.interval. | 180 |
| abstract_inverted_index.interview | 86 |
| abstract_inverted_index.involving | 45 |
| abstract_inverted_index.locations | 131 |
| abstract_inverted_index.motorists | 292 |
| abstract_inverted_index.prevalent | 193 |
| abstract_inverted_index.sectional | 73 |
| abstract_inverted_index.(APR=0.13, | 232 |
| abstract_inverted_index.(APR=6.39, | 245 |
| abstract_inverted_index.(APR=6.41, | 238 |
| abstract_inverted_index.15-29-year | 12, 195 |
| abstract_inverted_index.Australian | 105 |
| abstract_inverted_index.Geographic | 155 |
| abstract_inverted_index.Pedestrian | 189 |
| abstract_inverted_index.associated | 48, 61, 167, 249 |
| abstract_inverted_index.commercial | 205 |
| abstract_inverted_index.confidence | 179 |
| abstract_inverted_index.constitute | 22 |
| abstract_inverted_index.facilities | 95 |
| abstract_inverted_index.geospatial | 41, 55 |
| abstract_inverted_index.pedestrian | 58, 254, 299 |
| abstract_inverted_index.prevalence | 173, 252 |
| abstract_inverted_index.protective | 231 |
| abstract_inverted_index.regression | 161 |
| abstract_inverted_index.structured | 83 |
| abstract_inverted_index.0.01-0.93). | 234 |
| abstract_inverted_index.1.14-36.08) | 241 |
| abstract_inverted_index.2.75-14.82) | 247 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.Conclusion: | 256 |
| abstract_inverted_index.Information | 156 |
| abstract_inverted_index.Multinomial | 159 |
| abstract_inverted_index.Walkability | 106 |
| abstract_inverted_index.categorized | 128 |
| abstract_inverted_index.established | 53 |
| abstract_inverted_index.information | 39 |
| abstract_inverted_index.pedestrians | 21, 46, 89, 264 |
| abstract_inverted_index.purposively | 92 |
| abstract_inverted_index.represented | 183 |
| abstract_inverted_index.residential | 137 |
| abstract_inverted_index.sensitizing | 291 |
| abstract_inverted_index.videography | 114 |
| abstract_inverted_index.Metropolitan | 35 |
| abstract_inverted_index.constructing | 281 |
| abstract_inverted_index.distribution | 42, 56 |
| abstract_inverted_index.pedestrians. | 18 |
| abstract_inverted_index.Nakawa-Kireka | 214 |
| abstract_inverted_index.Namasuba-Zana | 209 |
| abstract_inverted_index.entertainment | 144 |
| abstract_inverted_index.questionnaire | 84 |
| abstract_inverted_index.characteristics | 112 |
| abstract_inverted_index.commercial/business | 139 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.58296687 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |