GFDet: Multi-Level Feature Fusion Network for Caries Detection Using Dental Endoscope Images Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.26599/bdma.2024.9020027
Early dental caries detection by endoscope can prevent complications, such as pulpitis and apical infection. However, automatically identifying dental caries remains challenging due to the uncertainty in size, contrast, low saliency, and high interclass similarity of dental caries. To address these problems, we propose the Global Feature Detector (GFDet) that integrates the proposed Feature Selection Pyramid Network (FSPN) and Adaptive Assignment-Balanced Mechanism (AABM). Specifically, FSPN performs upsampling with the semantic information of adjacent feature layers to mitigate the semantic information loss due to sharp channel reduction and enhance discriminative features by aggregating fine-grained details and high-level semantics. In addition, a new label assignment mechanism is proposed that enables the model to select more high-quality samples as positive samples, which can address the problem of easily ignored small objects. Meanwhile, we have built an endoscopic dataset for caries detection, consisting of 1318 images labeled by five dentists. For experiments on the collected dataset, the F1-score of our model is 75.6%, which out-performances the state-of-the-art models by 7.1%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26599/bdma.2024.9020027
- OA Status
- diamond
- Cited By
- 1
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405022143
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405022143Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26599/bdma.2024.9020027Digital Object Identifier
- Title
-
GFDet: Multi-Level Feature Fusion Network for Caries Detection Using Dental Endoscope ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-01Full publication date if available
- Authors
-
Nan Gao, Yukai Li, Peng Chen, Jijun Tang, Tianshuang LiuList of authors in order
- Landing page
-
https://doi.org/10.26599/bdma.2024.9020027Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.26599/bdma.2024.9020027Direct OA link when available
- Concepts
-
Discriminative model, Artificial intelligence, Computer science, Upsampling, Feature (linguistics), Pyramid (geometry), Pattern recognition (psychology), Pooling, Feature selection, Semantics (computer science), Convolutional neural network, Computer vision, Image (mathematics), Mathematics, Geometry, Programming language, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405022143 |
|---|---|
| doi | https://doi.org/10.26599/bdma.2024.9020027 |
| ids.doi | https://doi.org/10.26599/bdma.2024.9020027 |
| ids.openalex | https://openalex.org/W4405022143 |
| fwci | 1.17419103 |
| type | article |
| title | GFDet: Multi-Level Feature Fusion Network for Caries Detection Using Dental Endoscope Images |
| awards[0].id | https://openalex.org/G8862684424 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2020YFB1707700 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G6526707566 |
| awards[1].funder_id | https://openalex.org/F4320338464 |
| awards[1].display_name | |
| awards[1].funder_award_id | LGF22F020014 |
| awards[1].funder_display_name | Natural Science Foundation of Zhejiang Province |
| awards[2].id | https://openalex.org/G1947225586 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 62036009,U1909203 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | 1374 |
| biblio.first_page | 1362 |
| topics[0].id | https://openalex.org/T11363 |
| topics[0].field.id | https://openalex.org/fields/35 |
| topics[0].field.display_name | Dentistry |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3504 |
| topics[0].subfield.display_name | Oral Surgery |
| topics[0].display_name | Dental Radiography and Imaging |
| topics[1].id | https://openalex.org/T12439 |
| topics[1].field.id | https://openalex.org/fields/35 |
| topics[1].field.display_name | Dentistry |
| topics[1].score | 0.9811999797821045 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3500 |
| topics[1].subfield.display_name | General Dentistry |
| topics[1].display_name | Dental Research and COVID-19 |
| topics[2].id | https://openalex.org/T10359 |
| topics[2].field.id | https://openalex.org/fields/35 |
| topics[2].field.display_name | Dentistry |
| topics[2].score | 0.9519000053405762 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3504 |
| topics[2].subfield.display_name | Oral Surgery |
| topics[2].display_name | Dental Implant Techniques and Outcomes |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| funders[2].id | https://openalex.org/F4320338464 |
| funders[2].ror | https://ror.org/01h0zpd94 |
| funders[2].display_name | Natural Science Foundation of Zhejiang Province |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97931131 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7000561952590942 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[0].display_name | Discriminative model |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6897988319396973 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6720906496047974 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C110384440 |
| concepts[3].level | 3 |
| concepts[3].score | 0.66319340467453 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1143270 |
| concepts[3].display_name | Upsampling |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6273443102836609 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C142575187 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6057796478271484 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[5].display_name | Pyramid (geometry) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5444589257240295 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C70437156 |
| concepts[7].level | 2 |
| concepts[7].score | 0.528999388217926 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[7].display_name | Pooling |
| concepts[8].id | https://openalex.org/C148483581 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48400136828422546 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[8].display_name | Feature selection |
| concepts[9].id | https://openalex.org/C184337299 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43398287892341614 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[9].display_name | Semantics (computer science) |
| concepts[10].id | https://openalex.org/C81363708 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4262205958366394 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[10].display_name | Convolutional neural network |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35457974672317505 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.295405775308609 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.14850088953971863 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/discriminative-model |
| keywords[0].score | 0.7000561952590942 |
| keywords[0].display_name | Discriminative model |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6897988319396973 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6720906496047974 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/upsampling |
| keywords[3].score | 0.66319340467453 |
| keywords[3].display_name | Upsampling |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.6273443102836609 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/pyramid |
| keywords[5].score | 0.6057796478271484 |
| keywords[5].display_name | Pyramid (geometry) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5444589257240295 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/pooling |
| keywords[7].score | 0.528999388217926 |
| keywords[7].display_name | Pooling |
| keywords[8].id | https://openalex.org/keywords/feature-selection |
| keywords[8].score | 0.48400136828422546 |
| keywords[8].display_name | Feature selection |
| keywords[9].id | https://openalex.org/keywords/semantics |
| keywords[9].score | 0.43398287892341614 |
| keywords[9].display_name | Semantics (computer science) |
| keywords[10].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[10].score | 0.4262205958366394 |
| keywords[10].display_name | Convolutional neural network |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.35457974672317505 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.295405775308609 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.14850088953971863 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.26599/bdma.2024.9020027 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210209060 |
| locations[0].source.issn | 2096-0654 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2096-0654 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Big Data Mining and Analytics |
| locations[0].source.host_organization | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_name | Tsinghua University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_lineage_names | Tsinghua University Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Big Data Mining and Analytics |
| locations[0].landing_page_url | https://doi.org/10.26599/bdma.2024.9020027 |
| locations[1].id | pmh:oai:doaj.org/article:dbe656878c9d4c779938c503918ea752 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Big Data Mining and Analytics, Vol 7, Iss 4, Pp 1362-1374 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/dbe656878c9d4c779938c503918ea752 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5036908668 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4545-7197 |
| authorships[0].author.display_name | Nan Gao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I55712492 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Zhejiang University of Technology,Hangzhou,China,310000 |
| authorships[0].institutions[0].id | https://openalex.org/I55712492 |
| authorships[0].institutions[0].ror | https://ror.org/02djqfd08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I55712492 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nan Gao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science and Technology, Zhejiang University of Technology,Hangzhou,China,310000 |
| authorships[1].author.id | https://openalex.org/A5102606313 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yukai Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I55712492 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Zhejiang University of Technology,Hangzhou,China,310000 |
| authorships[1].institutions[0].id | https://openalex.org/I55712492 |
| authorships[1].institutions[0].ror | https://ror.org/02djqfd08 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I55712492 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yukai Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Technology, Zhejiang University of Technology,Hangzhou,China,310000 |
| authorships[2].author.id | https://openalex.org/A5100676478 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7120-1577 |
| authorships[2].author.display_name | Peng Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I55712492 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Zhejiang University of Technology,Hangzhou,China,310000 |
| authorships[2].institutions[0].id | https://openalex.org/I55712492 |
| authorships[2].institutions[0].ror | https://ror.org/02djqfd08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I55712492 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhejiang University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peng Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science and Technology, Zhejiang University of Technology,Hangzhou,China,310000 |
| authorships[3].author.id | https://openalex.org/A5001619694 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6377-536X |
| authorships[3].author.display_name | Jijun Tang |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I155781252 |
| authorships[3].affiliations[0].raw_affiliation_string | University of South Carolina,Department of Computer Science and Engineering,Columbia,SC,USA,29208 |
| authorships[3].institutions[0].id | https://openalex.org/I155781252 |
| authorships[3].institutions[0].ror | https://ror.org/02b6qw903 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I155781252 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of South Carolina |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jijun Tang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of South Carolina,Department of Computer Science and Engineering,Columbia,SC,USA,29208 |
| authorships[4].author.id | https://openalex.org/A5110305819 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-3501-7476 |
| authorships[4].author.display_name | Tianshuang Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210132950 |
| authorships[4].affiliations[0].raw_affiliation_string | Hangzhou Stomatology Hospital,Future Science and Technology City Branch,Hangzhou,China,310000 |
| authorships[4].institutions[0].id | https://openalex.org/I4210132950 |
| authorships[4].institutions[0].ror | https://ror.org/041yj5753 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210132950 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Stomatology Hospital |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Tianshuang Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Hangzhou Stomatology Hospital,Future Science and Technology City Branch,Hangzhou,China,310000 |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.26599/bdma.2024.9020027 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GFDet: Multi-Level Feature Fusion Network for Caries Detection Using Dental Endoscope Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11363 |
| primary_topic.field.id | https://openalex.org/fields/35 |
| primary_topic.field.display_name | Dentistry |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3504 |
| primary_topic.subfield.display_name | Oral Surgery |
| primary_topic.display_name | Dental Radiography and Imaging |
| related_works | https://openalex.org/W2559156603, https://openalex.org/W4300832495, https://openalex.org/W2987852271, https://openalex.org/W4287394948, https://openalex.org/W3149642877, https://openalex.org/W2967990525, https://openalex.org/W2949066288, https://openalex.org/W3119356360, https://openalex.org/W2022849497, https://openalex.org/W3215923428 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.26599/bdma.2024.9020027 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210209060 |
| best_oa_location.source.issn | 2096-0654 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2096-0654 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Big Data Mining and Analytics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_name | Tsinghua University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_lineage_names | Tsinghua University Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Big Data Mining and Analytics |
| best_oa_location.landing_page_url | https://doi.org/10.26599/bdma.2024.9020027 |
| primary_location.id | doi:10.26599/bdma.2024.9020027 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210209060 |
| primary_location.source.issn | 2096-0654 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2096-0654 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Big Data Mining and Analytics |
| primary_location.source.host_organization | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_name | Tsinghua University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_lineage_names | Tsinghua University Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Big Data Mining and Analytics |
| primary_location.landing_page_url | https://doi.org/10.26599/bdma.2024.9020027 |
| publication_date | 2024-12-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2924360996, https://openalex.org/W3080212223, https://openalex.org/W2593193072, https://openalex.org/W2956655325, https://openalex.org/W2555989946, https://openalex.org/W2951985572, https://openalex.org/W2565639579, https://openalex.org/W6779586474, https://openalex.org/W6771062828, https://openalex.org/W2412782625, https://openalex.org/W2999725795, https://openalex.org/W2963351448, https://openalex.org/W3205483686, https://openalex.org/W2193145675, https://openalex.org/W2899607431, https://openalex.org/W2768489488, https://openalex.org/W2963299996, https://openalex.org/W2988452521, https://openalex.org/W3109109814, https://openalex.org/W4220945685, https://openalex.org/W4206625407, https://openalex.org/W6750227808, https://openalex.org/W2963786238, https://openalex.org/W2982770724, https://openalex.org/W2605982830, https://openalex.org/W2504335775, https://openalex.org/W3012573144, https://openalex.org/W2989604896, https://openalex.org/W2883547127, https://openalex.org/W2899332989, https://openalex.org/W3024162568, https://openalex.org/W6790275670, https://openalex.org/W4221163766, https://openalex.org/W2970357141, https://openalex.org/W3108204254, https://openalex.org/W3175515048, https://openalex.org/W2987322772, https://openalex.org/W2034269173, https://openalex.org/W2987039128, https://openalex.org/W6620707391, https://openalex.org/W3138516171, https://openalex.org/W2586952804, https://openalex.org/W2963649926, https://openalex.org/W2891621179, https://openalex.org/W2752825721, https://openalex.org/W2963993992, https://openalex.org/W3165793043, https://openalex.org/W2943735948, https://openalex.org/W2974356752, https://openalex.org/W2618530766, https://openalex.org/W2752782242, https://openalex.org/W2963857746, https://openalex.org/W2964444661, https://openalex.org/W3171660447, https://openalex.org/W3035396860, https://openalex.org/W2962858109 |
| referenced_works_count | 56 |
| abstract_inverted_index.a | 99 |
| abstract_inverted_index.In | 97 |
| abstract_inverted_index.To | 38 |
| abstract_inverted_index.an | 132 |
| abstract_inverted_index.as | 10, 115 |
| abstract_inverted_index.by | 4, 90, 143, 164 |
| abstract_inverted_index.in | 26 |
| abstract_inverted_index.is | 104, 157 |
| abstract_inverted_index.of | 35, 71, 123, 139, 154 |
| abstract_inverted_index.on | 148 |
| abstract_inverted_index.to | 23, 75, 82, 110 |
| abstract_inverted_index.we | 42, 129 |
| abstract_inverted_index.For | 146 |
| abstract_inverted_index.and | 12, 31, 58, 86, 94 |
| abstract_inverted_index.can | 6, 119 |
| abstract_inverted_index.due | 22, 81 |
| abstract_inverted_index.for | 135 |
| abstract_inverted_index.low | 29 |
| abstract_inverted_index.new | 100 |
| abstract_inverted_index.our | 155 |
| abstract_inverted_index.the | 24, 44, 51, 68, 77, 108, 121, 149, 152, 161 |
| abstract_inverted_index.1318 | 140 |
| abstract_inverted_index.FSPN | 64 |
| abstract_inverted_index.five | 144 |
| abstract_inverted_index.have | 130 |
| abstract_inverted_index.high | 32 |
| abstract_inverted_index.loss | 80 |
| abstract_inverted_index.more | 112 |
| abstract_inverted_index.such | 9 |
| abstract_inverted_index.that | 49, 106 |
| abstract_inverted_index.with | 67 |
| abstract_inverted_index.7.1%. | 165 |
| abstract_inverted_index.Early | 0 |
| abstract_inverted_index.built | 131 |
| abstract_inverted_index.label | 101 |
| abstract_inverted_index.model | 109, 156 |
| abstract_inverted_index.sharp | 83 |
| abstract_inverted_index.size, | 27 |
| abstract_inverted_index.small | 126 |
| abstract_inverted_index.these | 40 |
| abstract_inverted_index.which | 118, 159 |
| abstract_inverted_index.(FSPN) | 57 |
| abstract_inverted_index.75.6%, | 158 |
| abstract_inverted_index.Global | 45 |
| abstract_inverted_index.apical | 13 |
| abstract_inverted_index.caries | 2, 19, 136 |
| abstract_inverted_index.dental | 1, 18, 36 |
| abstract_inverted_index.easily | 124 |
| abstract_inverted_index.images | 141 |
| abstract_inverted_index.layers | 74 |
| abstract_inverted_index.models | 163 |
| abstract_inverted_index.select | 111 |
| abstract_inverted_index.(AABM). | 62 |
| abstract_inverted_index.(GFDet) | 48 |
| abstract_inverted_index.Feature | 46, 53 |
| abstract_inverted_index.Network | 56 |
| abstract_inverted_index.Pyramid | 55 |
| abstract_inverted_index.address | 39, 120 |
| abstract_inverted_index.caries. | 37 |
| abstract_inverted_index.channel | 84 |
| abstract_inverted_index.dataset | 134 |
| abstract_inverted_index.details | 93 |
| abstract_inverted_index.enables | 107 |
| abstract_inverted_index.enhance | 87 |
| abstract_inverted_index.feature | 73 |
| abstract_inverted_index.ignored | 125 |
| abstract_inverted_index.labeled | 142 |
| abstract_inverted_index.prevent | 7 |
| abstract_inverted_index.problem | 122 |
| abstract_inverted_index.propose | 43 |
| abstract_inverted_index.remains | 20 |
| abstract_inverted_index.samples | 114 |
| abstract_inverted_index.Adaptive | 59 |
| abstract_inverted_index.Detector | 47 |
| abstract_inverted_index.F1-score | 153 |
| abstract_inverted_index.However, | 15 |
| abstract_inverted_index.adjacent | 72 |
| abstract_inverted_index.dataset, | 151 |
| abstract_inverted_index.features | 89 |
| abstract_inverted_index.mitigate | 76 |
| abstract_inverted_index.objects. | 127 |
| abstract_inverted_index.performs | 65 |
| abstract_inverted_index.positive | 116 |
| abstract_inverted_index.proposed | 52, 105 |
| abstract_inverted_index.pulpitis | 11 |
| abstract_inverted_index.samples, | 117 |
| abstract_inverted_index.semantic | 69, 78 |
| abstract_inverted_index.Mechanism | 61 |
| abstract_inverted_index.Selection | 54 |
| abstract_inverted_index.addition, | 98 |
| abstract_inverted_index.collected | 150 |
| abstract_inverted_index.contrast, | 28 |
| abstract_inverted_index.dentists. | 145 |
| abstract_inverted_index.detection | 3 |
| abstract_inverted_index.endoscope | 5 |
| abstract_inverted_index.mechanism | 103 |
| abstract_inverted_index.problems, | 41 |
| abstract_inverted_index.reduction | 85 |
| abstract_inverted_index.saliency, | 30 |
| abstract_inverted_index.Meanwhile, | 128 |
| abstract_inverted_index.assignment | 102 |
| abstract_inverted_index.consisting | 138 |
| abstract_inverted_index.detection, | 137 |
| abstract_inverted_index.endoscopic | 133 |
| abstract_inverted_index.high-level | 95 |
| abstract_inverted_index.infection. | 14 |
| abstract_inverted_index.integrates | 50 |
| abstract_inverted_index.interclass | 33 |
| abstract_inverted_index.semantics. | 96 |
| abstract_inverted_index.similarity | 34 |
| abstract_inverted_index.upsampling | 66 |
| abstract_inverted_index.aggregating | 91 |
| abstract_inverted_index.challenging | 21 |
| abstract_inverted_index.experiments | 147 |
| abstract_inverted_index.identifying | 17 |
| abstract_inverted_index.information | 70, 79 |
| abstract_inverted_index.uncertainty | 25 |
| abstract_inverted_index.fine-grained | 92 |
| abstract_inverted_index.high-quality | 113 |
| abstract_inverted_index.Specifically, | 63 |
| abstract_inverted_index.automatically | 16 |
| abstract_inverted_index.complications, | 8 |
| abstract_inverted_index.discriminative | 88 |
| abstract_inverted_index.out-performances | 160 |
| abstract_inverted_index.state-of-the-art | 162 |
| abstract_inverted_index.Assignment-Balanced | 60 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.72669505 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |