GGC: Gray-granger causality method for sensor correlation network structure mining on high-speed train Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.26599/tst.2021.9010034
Vehicle information on high-speed trains can not only determine whether the various parts of the train are working normally, but also predict the train's future operating status. How to obtain valuable information from massive vehicle data is a difficult point. First, we divide the vehicle data of a high-speed train into 13 subsystem datasets, according to the functions of the collection components. Then, according to the gray theory and the Granger causality test, we propose the Gray-Granger Causality (GGC) model, which can construct a vehicle information network on the basis of the correlation between the collection components. By using the complex network theory to mine vehicle information and its subsystem networks, we find that the vehicle information network and its subsystem networks have the characteristics of a scale-free network. In addition, the vehicle information network is weak against attacks, but the subsystem network is closely connected and strong against attacks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26599/tst.2021.9010034
- https://ieeexplore.ieee.org/ielx7/5971803/9515693/09515793.pdf
- OA Status
- diamond
- Cited By
- 10
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3194937808
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3194937808Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26599/tst.2021.9010034Digital Object Identifier
- Title
-
GGC: Gray-granger causality method for sensor correlation network structure mining on high-speed trainWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-17Full publication date if available
- Authors
-
Jie Man, Honghui Dong, Limin Jia, Yong QinList of authors in order
- Landing page
-
https://doi.org/10.26599/tst.2021.9010034Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/5971803/9515693/09515793.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/5971803/9515693/09515793.pdfDirect OA link when available
- Concepts
-
Train, Granger causality, Computer science, Data mining, Construct (python library), Causality (physics), Gray (unit), Correlation, Point (geometry), Artificial intelligence, Real-time computing, Machine learning, Mathematics, Computer network, Physics, Geometry, Cartography, Quantum mechanics, Geography, Medicine, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2023: 2, 2022: 4Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3194937808 |
|---|---|
| doi | https://doi.org/10.26599/tst.2021.9010034 |
| ids.doi | https://doi.org/10.26599/tst.2021.9010034 |
| ids.mag | 3194937808 |
| ids.openalex | https://openalex.org/W3194937808 |
| fwci | 0.95221613 |
| type | article |
| title | GGC: Gray-granger causality method for sensor correlation network structure mining on high-speed train |
| biblio.issue | 1 |
| biblio.volume | 27 |
| biblio.last_page | 222 |
| biblio.first_page | 207 |
| topics[0].id | https://openalex.org/T10064 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9909999966621399 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Complex Network Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C190839683 |
| concepts[0].level | 2 |
| concepts[0].score | 0.838728666305542 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2448197 |
| concepts[0].display_name | Train |
| concepts[1].id | https://openalex.org/C129824826 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8353411555290222 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2630107 |
| concepts[1].display_name | Granger causality |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.575934886932373 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.557010293006897 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C2780801425 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5370966196060181 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[4].display_name | Construct (python library) |
| concepts[5].id | https://openalex.org/C64357122 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5274308323860168 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1149766 |
| concepts[5].display_name | Causality (physics) |
| concepts[6].id | https://openalex.org/C166275286 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5178161263465881 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q190095 |
| concepts[6].display_name | Gray (unit) |
| concepts[7].id | https://openalex.org/C117220453 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4685438871383667 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[7].display_name | Correlation |
| concepts[8].id | https://openalex.org/C28719098 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46076512336730957 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[8].display_name | Point (geometry) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.371464341878891 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C79403827 |
| concepts[10].level | 1 |
| concepts[10].score | 0.35056859254837036 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[10].display_name | Real-time computing |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.25847291946411133 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.20268088579177856 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C31258907 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09807252883911133 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[13].display_name | Computer network |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C58640448 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[16].display_name | Cartography |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C71924100 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[19].display_name | Medicine |
| concepts[20].id | https://openalex.org/C126838900 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[20].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/train |
| keywords[0].score | 0.838728666305542 |
| keywords[0].display_name | Train |
| keywords[1].id | https://openalex.org/keywords/granger-causality |
| keywords[1].score | 0.8353411555290222 |
| keywords[1].display_name | Granger causality |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.575934886932373 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.557010293006897 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/construct |
| keywords[4].score | 0.5370966196060181 |
| keywords[4].display_name | Construct (python library) |
| keywords[5].id | https://openalex.org/keywords/causality |
| keywords[5].score | 0.5274308323860168 |
| keywords[5].display_name | Causality (physics) |
| keywords[6].id | https://openalex.org/keywords/gray |
| keywords[6].score | 0.5178161263465881 |
| keywords[6].display_name | Gray (unit) |
| keywords[7].id | https://openalex.org/keywords/correlation |
| keywords[7].score | 0.4685438871383667 |
| keywords[7].display_name | Correlation |
| keywords[8].id | https://openalex.org/keywords/point |
| keywords[8].score | 0.46076512336730957 |
| keywords[8].display_name | Point (geometry) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.371464341878891 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/real-time-computing |
| keywords[10].score | 0.35056859254837036 |
| keywords[10].display_name | Real-time computing |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.25847291946411133 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.20268088579177856 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/computer-network |
| keywords[13].score | 0.09807252883911133 |
| keywords[13].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.26599/tst.2021.9010034 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S24978797 |
| locations[0].source.issn | 1007-0214, 1878-7606 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1007-0214 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Tsinghua Science & Technology |
| locations[0].source.host_organization | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_name | Tsinghua University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_lineage_names | Tsinghua University Press |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/5971803/9515693/09515793.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Tsinghua Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.26599/tst.2021.9010034 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5088502873 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5259-7855 |
| authorships[0].author.display_name | Jie Man |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Jiaotong University, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I21193070 |
| authorships[0].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jie Man |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Jiaotong University, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5100389344 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6483-1426 |
| authorships[1].author.display_name | Honghui Dong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Jiaotong University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I21193070 |
| authorships[1].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Jiaotong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Honghui Dong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Jiaotong University, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5108050411 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0996-1345 |
| authorships[2].author.display_name | Limin Jia |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Jiaotong University, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I21193070 |
| authorships[2].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing Jiaotong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Limin Jia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Jiaotong University, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5088716214 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6519-8316 |
| authorships[3].author.display_name | Yong Qin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21193070 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Jiaotong University, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I21193070 |
| authorships[3].institutions[0].ror | https://ror.org/01yj56c84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21193070 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Jiaotong University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yong Qin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Jiaotong University, Beijing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/5971803/9515693/09515793.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GGC: Gray-granger causality method for sensor correlation network structure mining on high-speed train |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10064 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9909999966621399 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Complex Network Analysis Techniques |
| related_works | https://openalex.org/W2808615211, https://openalex.org/W618248309, https://openalex.org/W2377336366, https://openalex.org/W2022419910, https://openalex.org/W2035792466, https://openalex.org/W2977645287, https://openalex.org/W4251418261, https://openalex.org/W1972675643, https://openalex.org/W2911392473, https://openalex.org/W2154758532 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.26599/tst.2021.9010034 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S24978797 |
| best_oa_location.source.issn | 1007-0214, 1878-7606 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1007-0214 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Tsinghua Science & Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_name | Tsinghua University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_lineage_names | Tsinghua University Press |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/5971803/9515693/09515793.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Tsinghua Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.26599/tst.2021.9010034 |
| primary_location.id | doi:10.26599/tst.2021.9010034 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S24978797 |
| primary_location.source.issn | 1007-0214, 1878-7606 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1007-0214 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Tsinghua Science & Technology |
| primary_location.source.host_organization | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_name | Tsinghua University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_lineage_names | Tsinghua University Press |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/5971803/9515693/09515793.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Tsinghua Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.26599/tst.2021.9010034 |
| publication_date | 2021-08-17 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1990740864, https://openalex.org/W3159201257, https://openalex.org/W2612835125, https://openalex.org/W3107562138, https://openalex.org/W2925066182, https://openalex.org/W2951665412, https://openalex.org/W2557959762, https://openalex.org/W2798157446, https://openalex.org/W2803866944, https://openalex.org/W3013136547, https://openalex.org/W2070732879, https://openalex.org/W1973059234, https://openalex.org/W2065386084, https://openalex.org/W2891776610, https://openalex.org/W2160978450, https://openalex.org/W4237078129, https://openalex.org/W2063858529, https://openalex.org/W2124637492, https://openalex.org/W2559778626, https://openalex.org/W2135848608, https://openalex.org/W2886882142, https://openalex.org/W2091276445, https://openalex.org/W1516535719, https://openalex.org/W2015344683 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 37, 47, 83, 126 |
| abstract_inverted_index.13 | 51 |
| abstract_inverted_index.By | 97 |
| abstract_inverted_index.In | 129 |
| abstract_inverted_index.is | 36, 135, 143 |
| abstract_inverted_index.of | 13, 46, 58, 90, 125 |
| abstract_inverted_index.on | 2, 87 |
| abstract_inverted_index.to | 28, 55, 64, 103 |
| abstract_inverted_index.we | 41, 73, 111 |
| abstract_inverted_index.How | 27 |
| abstract_inverted_index.and | 68, 107, 118, 146 |
| abstract_inverted_index.are | 16 |
| abstract_inverted_index.but | 19, 139 |
| abstract_inverted_index.can | 5, 81 |
| abstract_inverted_index.its | 108, 119 |
| abstract_inverted_index.not | 6 |
| abstract_inverted_index.the | 10, 14, 22, 43, 56, 59, 65, 69, 75, 88, 91, 94, 99, 114, 123, 131, 140 |
| abstract_inverted_index.also | 20 |
| abstract_inverted_index.data | 35, 45 |
| abstract_inverted_index.find | 112 |
| abstract_inverted_index.from | 32 |
| abstract_inverted_index.gray | 66 |
| abstract_inverted_index.have | 122 |
| abstract_inverted_index.into | 50 |
| abstract_inverted_index.mine | 104 |
| abstract_inverted_index.only | 7 |
| abstract_inverted_index.that | 113 |
| abstract_inverted_index.weak | 136 |
| abstract_inverted_index.(GGC) | 78 |
| abstract_inverted_index.Then, | 62 |
| abstract_inverted_index.basis | 89 |
| abstract_inverted_index.parts | 12 |
| abstract_inverted_index.test, | 72 |
| abstract_inverted_index.train | 15, 49 |
| abstract_inverted_index.using | 98 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.First, | 40 |
| abstract_inverted_index.divide | 42 |
| abstract_inverted_index.future | 24 |
| abstract_inverted_index.model, | 79 |
| abstract_inverted_index.obtain | 29 |
| abstract_inverted_index.point. | 39 |
| abstract_inverted_index.strong | 147 |
| abstract_inverted_index.theory | 67, 102 |
| abstract_inverted_index.trains | 4 |
| abstract_inverted_index.Granger | 70 |
| abstract_inverted_index.Vehicle | 0 |
| abstract_inverted_index.against | 137, 148 |
| abstract_inverted_index.between | 93 |
| abstract_inverted_index.closely | 144 |
| abstract_inverted_index.complex | 100 |
| abstract_inverted_index.massive | 33 |
| abstract_inverted_index.network | 86, 101, 117, 134, 142 |
| abstract_inverted_index.predict | 21 |
| abstract_inverted_index.propose | 74 |
| abstract_inverted_index.status. | 26 |
| abstract_inverted_index.train's | 23 |
| abstract_inverted_index.various | 11 |
| abstract_inverted_index.vehicle | 34, 44, 84, 105, 115, 132 |
| abstract_inverted_index.whether | 9 |
| abstract_inverted_index.working | 17 |
| abstract_inverted_index.attacks, | 138 |
| abstract_inverted_index.attacks. | 149 |
| abstract_inverted_index.network. | 128 |
| abstract_inverted_index.networks | 121 |
| abstract_inverted_index.valuable | 30 |
| abstract_inverted_index.Causality | 77 |
| abstract_inverted_index.according | 54, 63 |
| abstract_inverted_index.addition, | 130 |
| abstract_inverted_index.causality | 71 |
| abstract_inverted_index.connected | 145 |
| abstract_inverted_index.construct | 82 |
| abstract_inverted_index.datasets, | 53 |
| abstract_inverted_index.determine | 8 |
| abstract_inverted_index.difficult | 38 |
| abstract_inverted_index.functions | 57 |
| abstract_inverted_index.networks, | 110 |
| abstract_inverted_index.normally, | 18 |
| abstract_inverted_index.operating | 25 |
| abstract_inverted_index.subsystem | 52, 109, 120, 141 |
| abstract_inverted_index.collection | 60, 95 |
| abstract_inverted_index.high-speed | 3, 48 |
| abstract_inverted_index.scale-free | 127 |
| abstract_inverted_index.components. | 61, 96 |
| abstract_inverted_index.correlation | 92 |
| abstract_inverted_index.information | 1, 31, 85, 106, 116, 133 |
| abstract_inverted_index.Gray-Granger | 76 |
| abstract_inverted_index.characteristics | 124 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.76958267 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |