GGN-GO: geometric graph networks for predicting protein function by multi-scale structure features Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/bib/bbae559
Recent advances in high-throughput sequencing have led to an explosion of genomic and transcriptomic data, offering a wealth of protein sequence information. However, the functions of most proteins remain unannotated. Traditional experimental methods for annotation of protein functions are costly and time-consuming. Current deep learning methods typically rely on Graph Convolutional Networks to propagate features between protein residues. However, these methods fail to capture fine atomic-level geometric structural features and cannot directly compute or propagate structural features (such as distances, directions, and angles) when transmitting features, often simplifying them to scalars. Additionally, difficulties in capturing long-range dependencies limit the model’s ability to identify key nodes (residues). To address these challenges, we propose a geometric graph network (GGN-GO) for predicting protein function that enriches feature extraction by capturing multi-scale geometric structural features at the atomic and residue levels. We use a geometric vector perceptron to convert these features into vector representations and aggregate them with node features for better understanding and propagation in the network. Moreover, we introduce a graph attention pooling layer captures key node information by adaptively aggregating local functional motifs, while contrastive learning enhances graph representation discriminability through random noise and different views. The experimental results show that GGN-GO outperforms six comparative methods in tasks with the most labels for both experimentally validated and predicted protein structures. Furthermore, GGN-GO identifies functional residues corresponding to those experimentally confirmed, showcasing its interpretability and the ability to pinpoint key protein regions. The code and data are available at: https://github.com/MiJia-ID/GGN-GO
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bib/bbae559
- OA Status
- gold
- Cited By
- 4
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403972634
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403972634Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bib/bbae559Digital Object Identifier
- Title
-
GGN-GO: geometric graph networks for predicting protein function by multi-scale structure featuresWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-23Full publication date if available
- Authors
-
Jia Mi, Han Wang, Jing Li, Jinghong Sun, Chang Li, Jing Wan, Yuan Zeng, Jingyang GaoList of authors in order
- Landing page
-
https://doi.org/10.1093/bib/bbae559Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/bib/bbae559Direct OA link when available
- Concepts
-
Graph, Computer science, Scale (ratio), Protein function prediction, Function (biology), Artificial intelligence, Pattern recognition (psychology), Protein function, Theoretical computer science, Biology, Cartography, Geography, Biochemistry, Gene, Evolutionary biologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403972634 |
|---|---|
| doi | https://doi.org/10.1093/bib/bbae559 |
| ids.doi | https://doi.org/10.1093/bib/bbae559 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39487084 |
| ids.openalex | https://openalex.org/W4403972634 |
| fwci | 1.9209889 |
| mesh[0].qualifier_ui | Q000737 |
| mesh[0].descriptor_ui | D011506 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | chemistry |
| mesh[0].descriptor_name | Proteins |
| mesh[1].qualifier_ui | Q000378 |
| mesh[1].descriptor_ui | D011506 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | metabolism |
| mesh[1].descriptor_name | Proteins |
| mesh[2].qualifier_ui | Q000235 |
| mesh[2].descriptor_ui | D011506 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | genetics |
| mesh[2].descriptor_name | Proteins |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D019295 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Computational Biology |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D016571 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Neural Networks, Computer |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000465 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Algorithms |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000077321 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Deep Learning |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D030562 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Databases, Protein |
| mesh[8].qualifier_ui | Q000737 |
| mesh[8].descriptor_ui | D011506 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | chemistry |
| mesh[8].descriptor_name | Proteins |
| mesh[9].qualifier_ui | Q000378 |
| mesh[9].descriptor_ui | D011506 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | metabolism |
| mesh[9].descriptor_name | Proteins |
| mesh[10].qualifier_ui | Q000235 |
| mesh[10].descriptor_ui | D011506 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | genetics |
| mesh[10].descriptor_name | Proteins |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D019295 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Computational Biology |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D016571 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Neural Networks, Computer |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000465 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Algorithms |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000077321 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Deep Learning |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D030562 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Databases, Protein |
| mesh[16].qualifier_ui | Q000737 |
| mesh[16].descriptor_ui | D011506 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | chemistry |
| mesh[16].descriptor_name | Proteins |
| mesh[17].qualifier_ui | Q000378 |
| mesh[17].descriptor_ui | D011506 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | metabolism |
| mesh[17].descriptor_name | Proteins |
| mesh[18].qualifier_ui | Q000235 |
| mesh[18].descriptor_ui | D011506 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | genetics |
| mesh[18].descriptor_name | Proteins |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D019295 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Computational Biology |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D016571 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Neural Networks, Computer |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000465 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Algorithms |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000077321 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Deep Learning |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D030562 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Databases, Protein |
| type | article |
| title | GGN-GO: geometric graph networks for predicting protein function by multi-scale structure features |
| biblio.issue | 6 |
| biblio.volume | 25 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10887 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Bioinformatics and Genomic Networks |
| topics[1].id | https://openalex.org/T10044 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Protein Structure and Dynamics |
| topics[2].id | https://openalex.org/T12254 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Machine Learning in Bioinformatics |
| is_xpac | False |
| apc_list.value | 4011 |
| apc_list.currency | USD |
| apc_list.value_usd | 4011 |
| apc_paid.value | 4011 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4011 |
| concepts[0].id | https://openalex.org/C132525143 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5587204098701477 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[0].display_name | Graph |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5418771505355835 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778755073 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5057785511016846 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[2].display_name | Scale (ratio) |
| concepts[3].id | https://openalex.org/C207060522 |
| concepts[3].level | 4 |
| concepts[3].score | 0.4610340893268585 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7251473 |
| concepts[3].display_name | Protein function prediction |
| concepts[4].id | https://openalex.org/C14036430 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4311591386795044 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[4].display_name | Function (biology) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4119037389755249 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.34730684757232666 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C2986374874 |
| concepts[7].level | 3 |
| concepts[7].score | 0.27341428399086 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8054 |
| concepts[7].display_name | Protein function |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.24367249011993408 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.10117325186729431 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C58640448 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07774734497070312 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[10].display_name | Cartography |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.07711663842201233 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C78458016 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[14].display_name | Evolutionary biology |
| keywords[0].id | https://openalex.org/keywords/graph |
| keywords[0].score | 0.5587204098701477 |
| keywords[0].display_name | Graph |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5418771505355835 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/scale |
| keywords[2].score | 0.5057785511016846 |
| keywords[2].display_name | Scale (ratio) |
| keywords[3].id | https://openalex.org/keywords/protein-function-prediction |
| keywords[3].score | 0.4610340893268585 |
| keywords[3].display_name | Protein function prediction |
| keywords[4].id | https://openalex.org/keywords/function |
| keywords[4].score | 0.4311591386795044 |
| keywords[4].display_name | Function (biology) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4119037389755249 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.34730684757232666 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/protein-function |
| keywords[7].score | 0.27341428399086 |
| keywords[7].display_name | Protein function |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.24367249011993408 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.10117325186729431 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/cartography |
| keywords[10].score | 0.07774734497070312 |
| keywords[10].display_name | Cartography |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.07711663842201233 |
| keywords[11].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1093/bib/bbae559 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S91767247 |
| locations[0].source.issn | 1467-5463, 1477-4054 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1467-5463 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Briefings in Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Briefings in Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bib/bbae559 |
| locations[1].id | pmid:39487084 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Briefings in bioinformatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39487084 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11530295 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Brief Bioinform |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11530295 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5052439365 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9393-4288 |
| authorships[0].author.display_name | Jia Mi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I75390827 |
| authorships[0].affiliations[0].raw_affiliation_string | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[0].institutions[0].id | https://openalex.org/I75390827 |
| authorships[0].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jia Mi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[1].author.id | https://openalex.org/A5115595880 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6282-0974 |
| authorships[1].author.display_name | Han Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I75390827 |
| authorships[1].affiliations[0].raw_affiliation_string | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[1].institutions[0].id | https://openalex.org/I75390827 |
| authorships[1].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Han Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[2].author.id | https://openalex.org/A5100337095 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3060-2531 |
| authorships[2].author.display_name | Jing Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I75390827 |
| authorships[2].affiliations[0].raw_affiliation_string | The College of Life Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[2].institutions[0].id | https://openalex.org/I75390827 |
| authorships[2].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jing Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The College of Life Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[3].author.id | https://openalex.org/A5100955119 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jinghong Sun |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I75390827 |
| authorships[3].affiliations[0].raw_affiliation_string | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[3].institutions[0].id | https://openalex.org/I75390827 |
| authorships[3].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinghong Sun |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[4].author.id | https://openalex.org/A5007581833 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3267-1859 |
| authorships[4].author.display_name | Chang Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I75390827 |
| authorships[4].affiliations[0].raw_affiliation_string | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[4].institutions[0].id | https://openalex.org/I75390827 |
| authorships[4].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chang Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[5].author.id | https://openalex.org/A5031875407 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4232-7883 |
| authorships[5].author.display_name | Jing Wan |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I75390827 |
| authorships[5].affiliations[0].raw_affiliation_string | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[5].institutions[0].id | https://openalex.org/I75390827 |
| authorships[5].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jing Wan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[6].author.id | https://openalex.org/A5009511042 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9710-6543 |
| authorships[6].author.display_name | Yuan Zeng |
| authorships[6].countries | CN, CZ, US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210127886 |
| authorships[6].affiliations[0].raw_affiliation_string | Chinese National Microbiology Data Center (NMDC) |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210122847, https://openalex.org/I4210124148 |
| authorships[6].affiliations[1].raw_affiliation_string | Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences |
| authorships[6].institutions[0].id | https://openalex.org/I19820366 |
| authorships[6].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I4210124148 |
| authorships[6].institutions[1].ror | https://ror.org/02wt4jg41 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210124148 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Microbiology Institute of Shaanxi |
| authorships[6].institutions[2].id | https://openalex.org/I4210122847 |
| authorships[6].institutions[2].ror | https://ror.org/02p1jz666 |
| authorships[6].institutions[2].type | facility |
| authorships[6].institutions[2].lineage | https://openalex.org/I202391551, https://openalex.org/I4210122847 |
| authorships[6].institutions[2].country_code | CZ |
| authorships[6].institutions[2].display_name | Czech Academy of Sciences, Institute of Microbiology |
| authorships[6].institutions[3].id | https://openalex.org/I4210127886 |
| authorships[6].institutions[3].ror | https://ror.org/02qy3wv98 |
| authorships[6].institutions[3].type | government |
| authorships[6].institutions[3].lineage | https://openalex.org/I1308126019, https://openalex.org/I1343035065, https://openalex.org/I1343035065, https://openalex.org/I4210095787, https://openalex.org/I4210127886 |
| authorships[6].institutions[3].country_code | US |
| authorships[6].institutions[3].display_name | NOAA National Data Buoy Center |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yuan Zeng |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Chinese National Microbiology Data Center (NMDC), Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences |
| authorships[7].author.id | https://openalex.org/A5078894109 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1270-6257 |
| authorships[7].author.display_name | Jingyang Gao |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I75390827 |
| authorships[7].affiliations[0].raw_affiliation_string | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| authorships[7].institutions[0].id | https://openalex.org/I75390827 |
| authorships[7].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Jingyang Gao |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | The College of Information Science and Technology, Beijing University of Chemical Technology , Beijing |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/bib/bbae559 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GGN-GO: geometric graph networks for predicting protein function by multi-scale structure features |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10887 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Bioinformatics and Genomic Networks |
| related_works | https://openalex.org/W4388708026, https://openalex.org/W3108941781, https://openalex.org/W2162644478, https://openalex.org/W1572303161, https://openalex.org/W4388486476, https://openalex.org/W1921169094, https://openalex.org/W366410996, https://openalex.org/W1663797894, https://openalex.org/W2793742470, https://openalex.org/W4239902399 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/bib/bbae559 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S91767247 |
| best_oa_location.source.issn | 1467-5463, 1477-4054 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1467-5463 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Briefings in Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Briefings in Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bib/bbae559 |
| primary_location.id | doi:10.1093/bib/bbae559 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S91767247 |
| primary_location.source.issn | 1467-5463, 1477-4054 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1467-5463 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Briefings in Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Briefings in Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bib/bbae559 |
| publication_date | 2024-09-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4375955768, https://openalex.org/W4362471278, https://openalex.org/W4388665407, https://openalex.org/W4382632527, https://openalex.org/W4321373691, https://openalex.org/W2045204781, https://openalex.org/W2100383158, https://openalex.org/W4391821988, https://openalex.org/W4360938460, https://openalex.org/W2615066396, https://openalex.org/W4236358448, https://openalex.org/W3146944767, https://openalex.org/W3177500196, https://openalex.org/W4220952154, https://openalex.org/W4382198799, https://openalex.org/W4401009333, https://openalex.org/W3164046276, https://openalex.org/W4392975559, https://openalex.org/W4320933419, https://openalex.org/W6726873649, https://openalex.org/W6652574002, https://openalex.org/W4394892342, https://openalex.org/W4387583274, https://openalex.org/W2004797340, https://openalex.org/W6782527804, https://openalex.org/W4312579905, https://openalex.org/W6631190155, https://openalex.org/W6760045743, https://openalex.org/W6634879750, https://openalex.org/W3165795318, https://openalex.org/W2804822363, https://openalex.org/W3211795435, https://openalex.org/W2900674118, https://openalex.org/W2152869198, https://openalex.org/W2117486996, https://openalex.org/W2616247523, https://openalex.org/W2018661561, https://openalex.org/W4396721167, https://openalex.org/W4288419263, https://openalex.org/W2966590054, https://openalex.org/W4226183797, https://openalex.org/W3102564565, https://openalex.org/W2008708467, https://openalex.org/W3095602948, https://openalex.org/W2016043834, https://openalex.org/W3081836708, https://openalex.org/W1582774210, https://openalex.org/W2964015378 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 17, 113, 140, 168 |
| abstract_inverted_index.To | 107 |
| abstract_inverted_index.We | 138 |
| abstract_inverted_index.an | 9 |
| abstract_inverted_index.as | 79 |
| abstract_inverted_index.at | 132 |
| abstract_inverted_index.by | 126, 177 |
| abstract_inverted_index.in | 3, 94, 162, 206 |
| abstract_inverted_index.of | 11, 19, 26, 36 |
| abstract_inverted_index.on | 49 |
| abstract_inverted_index.or | 74 |
| abstract_inverted_index.to | 8, 53, 63, 90, 102, 144, 226, 236 |
| abstract_inverted_index.we | 111, 166 |
| abstract_inverted_index.The | 196, 241 |
| abstract_inverted_index.and | 13, 41, 70, 82, 135, 151, 160, 193, 216, 233, 243 |
| abstract_inverted_index.are | 39, 245 |
| abstract_inverted_index.at: | 247 |
| abstract_inverted_index.for | 34, 118, 157, 212 |
| abstract_inverted_index.its | 231 |
| abstract_inverted_index.key | 104, 174, 238 |
| abstract_inverted_index.led | 7 |
| abstract_inverted_index.six | 203 |
| abstract_inverted_index.the | 24, 99, 133, 163, 209, 234 |
| abstract_inverted_index.use | 139 |
| abstract_inverted_index.both | 213 |
| abstract_inverted_index.code | 242 |
| abstract_inverted_index.data | 244 |
| abstract_inverted_index.deep | 44 |
| abstract_inverted_index.fail | 62 |
| abstract_inverted_index.fine | 65 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.into | 148 |
| abstract_inverted_index.most | 27, 210 |
| abstract_inverted_index.node | 155, 175 |
| abstract_inverted_index.rely | 48 |
| abstract_inverted_index.show | 199 |
| abstract_inverted_index.that | 122, 200 |
| abstract_inverted_index.them | 89, 153 |
| abstract_inverted_index.when | 84 |
| abstract_inverted_index.with | 154, 208 |
| abstract_inverted_index.(such | 78 |
| abstract_inverted_index.Graph | 50 |
| abstract_inverted_index.data, | 15 |
| abstract_inverted_index.graph | 115, 169, 187 |
| abstract_inverted_index.layer | 172 |
| abstract_inverted_index.limit | 98 |
| abstract_inverted_index.local | 180 |
| abstract_inverted_index.nodes | 105 |
| abstract_inverted_index.noise | 192 |
| abstract_inverted_index.often | 87 |
| abstract_inverted_index.tasks | 207 |
| abstract_inverted_index.these | 60, 109, 146 |
| abstract_inverted_index.those | 227 |
| abstract_inverted_index.while | 183 |
| abstract_inverted_index.GGN-GO | 201, 221 |
| abstract_inverted_index.Recent | 1 |
| abstract_inverted_index.atomic | 134 |
| abstract_inverted_index.better | 158 |
| abstract_inverted_index.cannot | 71 |
| abstract_inverted_index.costly | 40 |
| abstract_inverted_index.labels | 211 |
| abstract_inverted_index.random | 191 |
| abstract_inverted_index.remain | 29 |
| abstract_inverted_index.vector | 142, 149 |
| abstract_inverted_index.views. | 195 |
| abstract_inverted_index.wealth | 18 |
| abstract_inverted_index.Current | 43 |
| abstract_inverted_index.ability | 101, 235 |
| abstract_inverted_index.address | 108 |
| abstract_inverted_index.angles) | 83 |
| abstract_inverted_index.between | 56 |
| abstract_inverted_index.capture | 64 |
| abstract_inverted_index.compute | 73 |
| abstract_inverted_index.convert | 145 |
| abstract_inverted_index.feature | 124 |
| abstract_inverted_index.genomic | 12 |
| abstract_inverted_index.levels. | 137 |
| abstract_inverted_index.methods | 33, 46, 61, 205 |
| abstract_inverted_index.motifs, | 182 |
| abstract_inverted_index.network | 116 |
| abstract_inverted_index.pooling | 171 |
| abstract_inverted_index.propose | 112 |
| abstract_inverted_index.protein | 20, 37, 57, 120, 218, 239 |
| abstract_inverted_index.residue | 136 |
| abstract_inverted_index.results | 198 |
| abstract_inverted_index.through | 190 |
| abstract_inverted_index.(GGN-GO) | 117 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 23, 59 |
| abstract_inverted_index.Networks | 52 |
| abstract_inverted_index.advances | 2 |
| abstract_inverted_index.captures | 173 |
| abstract_inverted_index.directly | 72 |
| abstract_inverted_index.enhances | 186 |
| abstract_inverted_index.enriches | 123 |
| abstract_inverted_index.features | 55, 69, 77, 131, 147, 156 |
| abstract_inverted_index.function | 121 |
| abstract_inverted_index.identify | 103 |
| abstract_inverted_index.learning | 45, 185 |
| abstract_inverted_index.network. | 164 |
| abstract_inverted_index.offering | 16 |
| abstract_inverted_index.pinpoint | 237 |
| abstract_inverted_index.proteins | 28 |
| abstract_inverted_index.regions. | 240 |
| abstract_inverted_index.residues | 224 |
| abstract_inverted_index.scalars. | 91 |
| abstract_inverted_index.sequence | 21 |
| abstract_inverted_index.Moreover, | 165 |
| abstract_inverted_index.aggregate | 152 |
| abstract_inverted_index.attention | 170 |
| abstract_inverted_index.available | 246 |
| abstract_inverted_index.capturing | 95, 127 |
| abstract_inverted_index.different | 194 |
| abstract_inverted_index.explosion | 10 |
| abstract_inverted_index.features, | 86 |
| abstract_inverted_index.functions | 25, 38 |
| abstract_inverted_index.geometric | 67, 114, 129, 141 |
| abstract_inverted_index.introduce | 167 |
| abstract_inverted_index.model’s | 100 |
| abstract_inverted_index.predicted | 217 |
| abstract_inverted_index.propagate | 54, 75 |
| abstract_inverted_index.residues. | 58 |
| abstract_inverted_index.typically | 47 |
| abstract_inverted_index.validated | 215 |
| abstract_inverted_index.adaptively | 178 |
| abstract_inverted_index.annotation | 35 |
| abstract_inverted_index.confirmed, | 229 |
| abstract_inverted_index.distances, | 80 |
| abstract_inverted_index.extraction | 125 |
| abstract_inverted_index.functional | 181, 223 |
| abstract_inverted_index.identifies | 222 |
| abstract_inverted_index.long-range | 96 |
| abstract_inverted_index.perceptron | 143 |
| abstract_inverted_index.predicting | 119 |
| abstract_inverted_index.sequencing | 5 |
| abstract_inverted_index.showcasing | 230 |
| abstract_inverted_index.structural | 68, 76, 130 |
| abstract_inverted_index.(residues). | 106 |
| abstract_inverted_index.Traditional | 31 |
| abstract_inverted_index.aggregating | 179 |
| abstract_inverted_index.challenges, | 110 |
| abstract_inverted_index.comparative | 204 |
| abstract_inverted_index.contrastive | 184 |
| abstract_inverted_index.directions, | 81 |
| abstract_inverted_index.information | 176 |
| abstract_inverted_index.multi-scale | 128 |
| abstract_inverted_index.outperforms | 202 |
| abstract_inverted_index.propagation | 161 |
| abstract_inverted_index.simplifying | 88 |
| abstract_inverted_index.structures. | 219 |
| abstract_inverted_index.Furthermore, | 220 |
| abstract_inverted_index.atomic-level | 66 |
| abstract_inverted_index.dependencies | 97 |
| abstract_inverted_index.difficulties | 93 |
| abstract_inverted_index.experimental | 32, 197 |
| abstract_inverted_index.information. | 22 |
| abstract_inverted_index.transmitting | 85 |
| abstract_inverted_index.unannotated. | 30 |
| abstract_inverted_index.Additionally, | 92 |
| abstract_inverted_index.Convolutional | 51 |
| abstract_inverted_index.corresponding | 225 |
| abstract_inverted_index.understanding | 159 |
| abstract_inverted_index.experimentally | 214, 228 |
| abstract_inverted_index.representation | 188 |
| abstract_inverted_index.transcriptomic | 14 |
| abstract_inverted_index.high-throughput | 4 |
| abstract_inverted_index.representations | 150 |
| abstract_inverted_index.time-consuming. | 42 |
| abstract_inverted_index.discriminability | 189 |
| abstract_inverted_index.interpretability | 232 |
| abstract_inverted_index.https://github.com/MiJia-ID/GGN-GO | 248 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.80884503 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |