GhostShiftAddNet: More Features from Energy-Efficient Operations Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2109.09495
Deep convolutional neural networks (CNNs) are computationally and memory intensive. In CNNs, intensive multiplication can have resource implications that may challenge the ability for effective deployment of inference on resource-constrained edge devices. This paper proposes GhostShiftAddNet, where the motivation is to implement a hardware-efficient deep network: a multiplication-free CNN with fewer redundant features. We introduce a new bottleneck block, GhostSA, that converts all multiplications in the block to cheap operations. The bottleneck uses an appropriate number of bit-shift filters to process intrinsic feature maps, then applies a series of transformations that consist of bit-wise shifts with addition operations to generate more feature maps that fully learn to capture information underlying intrinsic features. We schedule the number of bit-shift and addition operations for different hardware platforms. We conduct extensive experiments and ablation studies with desktop and embedded (Jetson Nano) devices for implementation and measurements. We demonstrate the proposed GhostSA block can replace bottleneck blocks in the backbone of state-of-the-art networks architectures and gives improved performance on image classification benchmarks. Further, our GhostShiftAddNet can achieve higher classification accuracy with fewer FLOPs and parameters (reduced by up to 3x) than GhostNet. When compared to GhostNet, inference latency on the Jetson Nano is improved by 1.3x and 2x on the GPU and CPU respectively. Code is available open-source on \url{https://github.com/JIABI/GhostShiftAddNet}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2109.09495
- https://arxiv.org/pdf/2109.09495
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4286970480
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4286970480Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2109.09495Digital Object Identifier
- Title
-
GhostShiftAddNet: More Features from Energy-Efficient OperationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-20Full publication date if available
- Authors
-
Jia Bi, Jonathon Hare, Geoff V. MerrettList of authors in order
- Landing page
-
https://arxiv.org/abs/2109.09495Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2109.09495Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2109.09495Direct OA link when available
- Concepts
-
Bottleneck, Computer science, Convolutional neural network, Block (permutation group theory), Inference, Latency (audio), Feature (linguistics), Deep learning, Computer engineering, Parallel computing, Artificial intelligence, Embedded system, Linguistics, Geometry, Philosophy, Telecommunications, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4286970480 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2109.09495 |
| ids.doi | https://doi.org/10.48550/arxiv.2109.09495 |
| ids.openalex | https://openalex.org/W4286970480 |
| fwci | 0.0 |
| type | preprint |
| title | GhostShiftAddNet: More Features from Energy-Efficient Operations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9961000084877014 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| topics[2].id | https://openalex.org/T12676 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and ELM |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780513914 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8009219169616699 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[0].display_name | Bottleneck |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7983586192131042 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6403268575668335 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C2777210771 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5135031342506409 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[3].display_name | Block (permutation group theory) |
| concepts[4].id | https://openalex.org/C2776214188 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5055580139160156 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[4].display_name | Inference |
| concepts[5].id | https://openalex.org/C82876162 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45899277925491333 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[5].display_name | Latency (audio) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4554046094417572 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4532325565814972 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C113775141 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44263604283332825 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[8].display_name | Computer engineering |
| concepts[9].id | https://openalex.org/C173608175 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38375362753868103 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[9].display_name | Parallel computing |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.29376405477523804 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C149635348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2454107403755188 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[11].display_name | Embedded system |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| concepts[13].id | https://openalex.org/C2524010 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[13].display_name | Geometry |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/bottleneck |
| keywords[0].score | 0.8009219169616699 |
| keywords[0].display_name | Bottleneck |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7983586192131042 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6403268575668335 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/block |
| keywords[3].score | 0.5135031342506409 |
| keywords[3].display_name | Block (permutation group theory) |
| keywords[4].id | https://openalex.org/keywords/inference |
| keywords[4].score | 0.5055580139160156 |
| keywords[4].display_name | Inference |
| keywords[5].id | https://openalex.org/keywords/latency |
| keywords[5].score | 0.45899277925491333 |
| keywords[5].display_name | Latency (audio) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.4554046094417572 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.4532325565814972 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/computer-engineering |
| keywords[8].score | 0.44263604283332825 |
| keywords[8].display_name | Computer engineering |
| keywords[9].id | https://openalex.org/keywords/parallel-computing |
| keywords[9].score | 0.38375362753868103 |
| keywords[9].display_name | Parallel computing |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.29376405477523804 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/embedded-system |
| keywords[11].score | 0.2454107403755188 |
| keywords[11].display_name | Embedded system |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2109.09495 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2109.09495 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2109.09495 |
| locations[1].id | doi:10.48550/arxiv.2109.09495 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2109.09495 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5113745953 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jia Bi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bi, Jia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067505586 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2921-4283 |
| authorships[1].author.display_name | Jonathon Hare |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hare, Jonathon |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5001556143 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4980-3894 |
| authorships[2].author.display_name | Geoff V. Merrett |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Merrett, Geoff V. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2109.09495 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GhostShiftAddNet: More Features from Energy-Efficient Operations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2595172197, https://openalex.org/W2084856301, https://openalex.org/W2127970246, https://openalex.org/W4382618745, https://openalex.org/W2885125400, https://openalex.org/W1001352512, https://openalex.org/W3008625068, https://openalex.org/W3128807919, https://openalex.org/W3176411177, https://openalex.org/W3035501883 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2109.09495 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2109.09495 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2109.09495 |
| primary_location.id | pmh:oai:arXiv.org:2109.09495 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2109.09495 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2109.09495 |
| publication_date | 2021-09-20 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 42, 46, 55, 86 |
| abstract_inverted_index.2x | 203 |
| abstract_inverted_index.In | 10 |
| abstract_inverted_index.We | 53, 112, 125, 143 |
| abstract_inverted_index.an | 73 |
| abstract_inverted_index.by | 182, 200 |
| abstract_inverted_index.in | 64, 153 |
| abstract_inverted_index.is | 39, 198, 211 |
| abstract_inverted_index.of | 26, 76, 88, 92, 116, 156 |
| abstract_inverted_index.on | 28, 164, 194, 204, 214 |
| abstract_inverted_index.to | 40, 67, 79, 98, 106, 184, 190 |
| abstract_inverted_index.up | 183 |
| abstract_inverted_index.3x) | 185 |
| abstract_inverted_index.CNN | 48 |
| abstract_inverted_index.CPU | 208 |
| abstract_inverted_index.GPU | 206 |
| abstract_inverted_index.The | 70 |
| abstract_inverted_index.all | 62 |
| abstract_inverted_index.and | 7, 118, 129, 134, 141, 160, 179, 202, 207 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.can | 14, 149, 171 |
| abstract_inverted_index.for | 23, 121, 139 |
| abstract_inverted_index.may | 19 |
| abstract_inverted_index.new | 56 |
| abstract_inverted_index.our | 169 |
| abstract_inverted_index.the | 21, 37, 65, 114, 145, 154, 195, 205 |
| abstract_inverted_index.1.3x | 201 |
| abstract_inverted_index.Code | 210 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.Nano | 197 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.When | 188 |
| abstract_inverted_index.deep | 44 |
| abstract_inverted_index.edge | 30 |
| abstract_inverted_index.have | 15 |
| abstract_inverted_index.maps | 102 |
| abstract_inverted_index.more | 100 |
| abstract_inverted_index.than | 186 |
| abstract_inverted_index.that | 18, 60, 90, 103 |
| abstract_inverted_index.then | 84 |
| abstract_inverted_index.uses | 72 |
| abstract_inverted_index.with | 49, 95, 132, 176 |
| abstract_inverted_index.CNNs, | 11 |
| abstract_inverted_index.FLOPs | 178 |
| abstract_inverted_index.Nano) | 137 |
| abstract_inverted_index.block | 66, 148 |
| abstract_inverted_index.cheap | 68 |
| abstract_inverted_index.fewer | 50, 177 |
| abstract_inverted_index.fully | 104 |
| abstract_inverted_index.gives | 161 |
| abstract_inverted_index.image | 165 |
| abstract_inverted_index.learn | 105 |
| abstract_inverted_index.maps, | 83 |
| abstract_inverted_index.paper | 33 |
| abstract_inverted_index.where | 36 |
| abstract_inverted_index.(CNNs) | 4 |
| abstract_inverted_index.Jetson | 196 |
| abstract_inverted_index.block, | 58 |
| abstract_inverted_index.blocks | 152 |
| abstract_inverted_index.higher | 173 |
| abstract_inverted_index.memory | 8 |
| abstract_inverted_index.neural | 2 |
| abstract_inverted_index.number | 75, 115 |
| abstract_inverted_index.series | 87 |
| abstract_inverted_index.shifts | 94 |
| abstract_inverted_index.(Jetson | 136 |
| abstract_inverted_index.GhostSA | 147 |
| abstract_inverted_index.ability | 22 |
| abstract_inverted_index.achieve | 172 |
| abstract_inverted_index.applies | 85 |
| abstract_inverted_index.capture | 107 |
| abstract_inverted_index.conduct | 126 |
| abstract_inverted_index.consist | 91 |
| abstract_inverted_index.desktop | 133 |
| abstract_inverted_index.devices | 138 |
| abstract_inverted_index.feature | 82, 101 |
| abstract_inverted_index.filters | 78 |
| abstract_inverted_index.latency | 193 |
| abstract_inverted_index.process | 80 |
| abstract_inverted_index.replace | 150 |
| abstract_inverted_index.studies | 131 |
| abstract_inverted_index.(reduced | 181 |
| abstract_inverted_index.Further, | 168 |
| abstract_inverted_index.GhostSA, | 59 |
| abstract_inverted_index.ablation | 130 |
| abstract_inverted_index.accuracy | 175 |
| abstract_inverted_index.addition | 96, 119 |
| abstract_inverted_index.backbone | 155 |
| abstract_inverted_index.bit-wise | 93 |
| abstract_inverted_index.compared | 189 |
| abstract_inverted_index.converts | 61 |
| abstract_inverted_index.devices. | 31 |
| abstract_inverted_index.embedded | 135 |
| abstract_inverted_index.generate | 99 |
| abstract_inverted_index.hardware | 123 |
| abstract_inverted_index.improved | 162, 199 |
| abstract_inverted_index.network: | 45 |
| abstract_inverted_index.networks | 3, 158 |
| abstract_inverted_index.proposed | 146 |
| abstract_inverted_index.proposes | 34 |
| abstract_inverted_index.resource | 16 |
| abstract_inverted_index.schedule | 113 |
| abstract_inverted_index.GhostNet, | 191 |
| abstract_inverted_index.GhostNet. | 187 |
| abstract_inverted_index.available | 212 |
| abstract_inverted_index.bit-shift | 77, 117 |
| abstract_inverted_index.challenge | 20 |
| abstract_inverted_index.different | 122 |
| abstract_inverted_index.effective | 24 |
| abstract_inverted_index.extensive | 127 |
| abstract_inverted_index.features. | 52, 111 |
| abstract_inverted_index.implement | 41 |
| abstract_inverted_index.inference | 27, 192 |
| abstract_inverted_index.intensive | 12 |
| abstract_inverted_index.intrinsic | 81, 110 |
| abstract_inverted_index.introduce | 54 |
| abstract_inverted_index.redundant | 51 |
| abstract_inverted_index.bottleneck | 57, 71, 151 |
| abstract_inverted_index.deployment | 25 |
| abstract_inverted_index.intensive. | 9 |
| abstract_inverted_index.motivation | 38 |
| abstract_inverted_index.operations | 97, 120 |
| abstract_inverted_index.parameters | 180 |
| abstract_inverted_index.platforms. | 124 |
| abstract_inverted_index.underlying | 109 |
| abstract_inverted_index.appropriate | 74 |
| abstract_inverted_index.benchmarks. | 167 |
| abstract_inverted_index.demonstrate | 144 |
| abstract_inverted_index.experiments | 128 |
| abstract_inverted_index.information | 108 |
| abstract_inverted_index.open-source | 213 |
| abstract_inverted_index.operations. | 69 |
| abstract_inverted_index.performance | 163 |
| abstract_inverted_index.implications | 17 |
| abstract_inverted_index.architectures | 159 |
| abstract_inverted_index.convolutional | 1 |
| abstract_inverted_index.measurements. | 142 |
| abstract_inverted_index.respectively. | 209 |
| abstract_inverted_index.classification | 166, 174 |
| abstract_inverted_index.implementation | 140 |
| abstract_inverted_index.multiplication | 13 |
| abstract_inverted_index.computationally | 6 |
| abstract_inverted_index.multiplications | 63 |
| abstract_inverted_index.transformations | 89 |
| abstract_inverted_index.GhostShiftAddNet | 170 |
| abstract_inverted_index.state-of-the-art | 157 |
| abstract_inverted_index.GhostShiftAddNet, | 35 |
| abstract_inverted_index.hardware-efficient | 43 |
| abstract_inverted_index.multiplication-free | 47 |
| abstract_inverted_index.resource-constrained | 29 |
| abstract_inverted_index.\url{https://github.com/JIABI/GhostShiftAddNet}. | 215 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.21216414 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |