GLaRef@CRAC2025: Should we transform coreference resolution into a text generation task? Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48448/ckvh-1d46
We present the submissions of our team to the Unconstrained and LLM tracks of the Computational Models of Reference, Anaphora and Coreference (CRAC2025) shared task, where we ended respectively in the fifth and the first place, but nevertheless with similar scores: average CoNLL-F1 scores of 61.57 and 62.96 on the test set, but with very large differences in computational cost. Indeed, the classical pair-wise resolution system submitted to the Unconstrained track obtained similar performance but with less than 10\% of the computational cost. Reflecting on this fact, we point out problems that we ran into using generative AI to perform coreference resolution. We explain how the framework of text generation stands in the way of a reliable text-global coreference representation. Nonetheless, we realize there are many potential improvements of our LLM-system; we discuss them at the end of this article.
Related Topics
- Type
- other
- Landing Page
- https://doi.org/10.48448/ckvh-1d46
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7106842815
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7106842815Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48448/ckvh-1d46Digital Object Identifier
- Title
-
GLaRef@CRAC2025: Should we transform coreference resolution into a text generation task?Work title
- Type
-
otherOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-25Full publication date if available
- Authors
-
Association for Computational Linguistics 2025List of authors in order
- Landing page
-
https://doi.org/10.48448/ckvh-1d46Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48448/ckvh-1d46Direct OA link when available
- Concepts
-
Coreference, Computer science, Anaphora (linguistics), Artificial intelligence, Natural language processing, Resolution (logic), Generative grammar, Point (geometry), Computational linguistics, Computational model, Machine learning, Computational complexity theory, Training set, Generative model, Track (disk drive), Deep learning, Conjunction (astronomy), Test (biology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7106842815 |
|---|---|
| doi | https://doi.org/10.48448/ckvh-1d46 |
| ids.doi | https://doi.org/10.48448/ckvh-1d46 |
| ids.openalex | https://openalex.org/W7106842815 |
| fwci | |
| type | other |
| title | GLaRef@CRAC2025: Should we transform coreference resolution into a text generation task? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C28076734 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9766700863838196 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q63087 |
| concepts[0].display_name | Coreference |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8018482327461243 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2781449363 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6962345242500305 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q156751 |
| concepts[2].display_name | Anaphora (linguistics) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6918583512306213 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6292918920516968 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C138268822 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6168367862701416 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[5].display_name | Resolution (logic) |
| concepts[6].id | https://openalex.org/C39890363 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6137760877609253 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[6].display_name | Generative grammar |
| concepts[7].id | https://openalex.org/C28719098 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5771011710166931 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[7].display_name | Point (geometry) |
| concepts[8].id | https://openalex.org/C155092808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4060477018356323 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q182557 |
| concepts[8].display_name | Computational linguistics |
| concepts[9].id | https://openalex.org/C66024118 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3592160940170288 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1122506 |
| concepts[9].display_name | Computational model |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.335171639919281 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C179799912 |
| concepts[11].level | 2 |
| concepts[11].score | 0.32631734013557434 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q205084 |
| concepts[11].display_name | Computational complexity theory |
| concepts[12].id | https://openalex.org/C51632099 |
| concepts[12].level | 2 |
| concepts[12].score | 0.31184956431388855 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[12].display_name | Training set |
| concepts[13].id | https://openalex.org/C167966045 |
| concepts[13].level | 3 |
| concepts[13].score | 0.2932296693325043 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[13].display_name | Generative model |
| concepts[14].id | https://openalex.org/C89992363 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2767502963542938 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5961558 |
| concepts[14].display_name | Track (disk drive) |
| concepts[15].id | https://openalex.org/C108583219 |
| concepts[15].level | 2 |
| concepts[15].score | 0.2664281725883484 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[15].display_name | Deep learning |
| concepts[16].id | https://openalex.org/C59656382 |
| concepts[16].level | 2 |
| concepts[16].score | 0.26617926359176636 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q191536 |
| concepts[16].display_name | Conjunction (astronomy) |
| concepts[17].id | https://openalex.org/C2777267654 |
| concepts[17].level | 2 |
| concepts[17].score | 0.2523273229598999 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3519023 |
| concepts[17].display_name | Test (biology) |
| keywords[0].id | https://openalex.org/keywords/coreference |
| keywords[0].score | 0.9766700863838196 |
| keywords[0].display_name | Coreference |
| keywords[1].id | https://openalex.org/keywords/anaphora |
| keywords[1].score | 0.6962345242500305 |
| keywords[1].display_name | Anaphora (linguistics) |
| keywords[2].id | https://openalex.org/keywords/resolution |
| keywords[2].score | 0.6168367862701416 |
| keywords[2].display_name | Resolution (logic) |
| keywords[3].id | https://openalex.org/keywords/generative-grammar |
| keywords[3].score | 0.6137760877609253 |
| keywords[3].display_name | Generative grammar |
| keywords[4].id | https://openalex.org/keywords/point |
| keywords[4].score | 0.5771011710166931 |
| keywords[4].display_name | Point (geometry) |
| keywords[5].id | https://openalex.org/keywords/computational-linguistics |
| keywords[5].score | 0.4060477018356323 |
| keywords[5].display_name | Computational linguistics |
| keywords[6].id | https://openalex.org/keywords/computational-model |
| keywords[6].score | 0.3592160940170288 |
| keywords[6].display_name | Computational model |
| language | |
| locations[0].id | doi:10.48448/ckvh-1d46 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S7407053148 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Underline Science Inc. |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48448/ckvh-1d46 |
| indexed_in | datacite |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Association for Computational Linguistics 2025 |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Association for Computational Linguistics 2025 |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48448/ckvh-1d46 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-28T00:00:00 |
| display_name | GLaRef@CRAC2025: Should we transform coreference resolution into a text generation task? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T02:12:24.556248 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48448/ckvh-1d46 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407053148 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Underline Science Inc. |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48448/ckvh-1d46 |
| primary_location.id | doi:10.48448/ckvh-1d46 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S7407053148 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Underline Science Inc. |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48448/ckvh-1d46 |
| publication_date | 2025-10-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 115 |
| abstract_inverted_index.AI | 97 |
| abstract_inverted_index.We | 0, 102 |
| abstract_inverted_index.at | 134 |
| abstract_inverted_index.in | 29, 57, 111 |
| abstract_inverted_index.of | 4, 13, 17, 44, 79, 107, 114, 128, 137 |
| abstract_inverted_index.on | 48, 84 |
| abstract_inverted_index.to | 7, 67, 98 |
| abstract_inverted_index.we | 26, 87, 92, 121, 131 |
| abstract_inverted_index.LLM | 11 |
| abstract_inverted_index.and | 10, 20, 32, 46 |
| abstract_inverted_index.are | 124 |
| abstract_inverted_index.but | 36, 52, 74 |
| abstract_inverted_index.end | 136 |
| abstract_inverted_index.how | 104 |
| abstract_inverted_index.our | 5, 129 |
| abstract_inverted_index.out | 89 |
| abstract_inverted_index.ran | 93 |
| abstract_inverted_index.the | 2, 8, 14, 30, 33, 49, 61, 68, 80, 105, 112, 135 |
| abstract_inverted_index.way | 113 |
| abstract_inverted_index.10\% | 78 |
| abstract_inverted_index.into | 94 |
| abstract_inverted_index.less | 76 |
| abstract_inverted_index.many | 125 |
| abstract_inverted_index.set, | 51 |
| abstract_inverted_index.team | 6 |
| abstract_inverted_index.test | 50 |
| abstract_inverted_index.text | 108 |
| abstract_inverted_index.than | 77 |
| abstract_inverted_index.that | 91 |
| abstract_inverted_index.them | 133 |
| abstract_inverted_index.this | 85, 138 |
| abstract_inverted_index.very | 54 |
| abstract_inverted_index.with | 38, 53, 75 |
| abstract_inverted_index.61.57 | 45 |
| abstract_inverted_index.62.96 | 47 |
| abstract_inverted_index.cost. | 59, 82 |
| abstract_inverted_index.ended | 27 |
| abstract_inverted_index.fact, | 86 |
| abstract_inverted_index.fifth | 31 |
| abstract_inverted_index.first | 34 |
| abstract_inverted_index.large | 55 |
| abstract_inverted_index.point | 88 |
| abstract_inverted_index.task, | 24 |
| abstract_inverted_index.there | 123 |
| abstract_inverted_index.track | 70 |
| abstract_inverted_index.using | 95 |
| abstract_inverted_index.where | 25 |
| abstract_inverted_index.Models | 16 |
| abstract_inverted_index.place, | 35 |
| abstract_inverted_index.scores | 43 |
| abstract_inverted_index.shared | 23 |
| abstract_inverted_index.stands | 110 |
| abstract_inverted_index.system | 65 |
| abstract_inverted_index.tracks | 12 |
| abstract_inverted_index.Indeed, | 60 |
| abstract_inverted_index.average | 41 |
| abstract_inverted_index.discuss | 132 |
| abstract_inverted_index.explain | 103 |
| abstract_inverted_index.perform | 99 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.realize | 122 |
| abstract_inverted_index.scores: | 40 |
| abstract_inverted_index.similar | 39, 72 |
| abstract_inverted_index.Anaphora | 19 |
| abstract_inverted_index.CoNLL-F1 | 42 |
| abstract_inverted_index.article. | 139 |
| abstract_inverted_index.obtained | 71 |
| abstract_inverted_index.problems | 90 |
| abstract_inverted_index.reliable | 116 |
| abstract_inverted_index.classical | 62 |
| abstract_inverted_index.framework | 106 |
| abstract_inverted_index.pair-wise | 63 |
| abstract_inverted_index.potential | 126 |
| abstract_inverted_index.submitted | 66 |
| abstract_inverted_index.(CRAC2025) | 22 |
| abstract_inverted_index.Reference, | 18 |
| abstract_inverted_index.Reflecting | 83 |
| abstract_inverted_index.generation | 109 |
| abstract_inverted_index.generative | 96 |
| abstract_inverted_index.resolution | 64 |
| abstract_inverted_index.Coreference | 21 |
| abstract_inverted_index.LLM-system; | 130 |
| abstract_inverted_index.coreference | 100, 118 |
| abstract_inverted_index.differences | 56 |
| abstract_inverted_index.performance | 73 |
| abstract_inverted_index.resolution. | 101 |
| abstract_inverted_index.submissions | 3 |
| abstract_inverted_index.text-global | 117 |
| abstract_inverted_index.Nonetheless, | 120 |
| abstract_inverted_index.improvements | 127 |
| abstract_inverted_index.nevertheless | 37 |
| abstract_inverted_index.respectively | 28 |
| abstract_inverted_index.Computational | 15 |
| abstract_inverted_index.Unconstrained | 9, 69 |
| abstract_inverted_index.computational | 58, 81 |
| abstract_inverted_index.representation. | 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |