GlassBoost: A lightweight and explainable classification framework for tabular datasets Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.34961/19115
Explainable artificial intelligence (XAI) is essential for fostering trust, transparency, and accountability in machine learning systems, particularly when applied in high-stakes domains. This paper introduces a novel XAI system designed for classification tasks on tabular data, which offers a balance between performance and interpretability. The proposed method, GlassBoost, first trains an XGBoost model on a given dataset and then computes gain scores, quantifying the average improvement in the model’s loss function contributed by each feature during tree splits. Based on these scores, a subset of significant features is selected. A shallow decision tree is then trained using the top d features with the highest gain scores, where d is significantly smaller than the total number of original features. This model compression yields a transparent, IF–THEN rule-based decision process that remains faithful to the original high-performing model. To evaluate the system, we apply it to an anomaly detection task in the context of intrusion detection systems (IDSs), using a dataset containing traffic features from both malicious and normal activities. Results show that our method achieves high accuracy, precision, and recall while providing a clear and interpretable explanation of its decision-making. We further validate its explainability using SHAP, a well-established approach in the field of XAI. Comparative analysis demonstrates that GlassBoost outperforms SHAP in terms of precision, recall, and accuracy, with more balanced performance across the three metrics. Likewise, our review of literature findings indicate that Glassboost outperforms many other XAI models while retaining computational efficiency. In one of our configurations, GlassBoost achieved accuracy of 0.9868, recall of 0.9792, and precision of 0.9843 using only eight features within a tree structure of a maximum depth of four.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.34961/19115
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7108651272
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7108651272Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.34961/19115Digital Object Identifier
- Title
-
GlassBoost: A lightweight and explainable classification framework for tabular datasetsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-19Full publication date if available
- Authors
-
Namjoo, Ehsan, O'Connor, Alison N., Buckley, Jim, Ryan ConorList of authors in order
- Landing page
-
https://doi.org/10.34961/19115Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.34961/19115Direct OA link when available
- Concepts
-
Computer science, Decision tree, Artificial intelligence, Context (archaeology), Task (project management), Data mining, Machine learning, Feature (linguistics), Field (mathematics), Process (computing), Intrusion detection system, Tree (set theory), Precision and recall, Feature selection, Function (biology), Feature extraction, Anomaly detection, Computational intelligence, Decision tree learning, Key (lock), Recall, Statistical classification, Pattern recognition (psychology), Training set, Task analysis, Computational complexity theory, Time complexity, Decision process, Information gain ratio, Tree structure, Root (linguistics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7108651272 |
|---|---|
| doi | https://doi.org/10.34961/19115 |
| ids.doi | https://doi.org/10.34961/19115 |
| ids.openalex | https://openalex.org/W7108651272 |
| fwci | 0.0 |
| type | article |
| title | GlassBoost: A lightweight and explainable classification framework for tabular datasets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7241928577423096 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.10388250648975372 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T10400 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.05497472733259201 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.761506974697113 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C84525736 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5995290279388428 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[1].display_name | Decision tree |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5961089134216309 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2779343474 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5439569354057312 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[3].display_name | Context (archaeology) |
| concepts[4].id | https://openalex.org/C2780451532 |
| concepts[4].level | 2 |
| concepts[4].score | 0.511576235294342 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[4].display_name | Task (project management) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4953363537788391 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4825488030910492 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46806442737579346 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C9652623 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4629853665828705 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[8].display_name | Field (mathematics) |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44167912006378174 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C35525427 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4155387282371521 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[10].display_name | Intrusion detection system |
| concepts[11].id | https://openalex.org/C113174947 |
| concepts[11].level | 2 |
| concepts[11].score | 0.40720170736312866 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[11].display_name | Tree (set theory) |
| concepts[12].id | https://openalex.org/C81669768 |
| concepts[12].level | 2 |
| concepts[12].score | 0.39195504784584045 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2359161 |
| concepts[12].display_name | Precision and recall |
| concepts[13].id | https://openalex.org/C148483581 |
| concepts[13].level | 2 |
| concepts[13].score | 0.37161150574684143 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[13].display_name | Feature selection |
| concepts[14].id | https://openalex.org/C14036430 |
| concepts[14].level | 2 |
| concepts[14].score | 0.36531925201416016 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[14].display_name | Function (biology) |
| concepts[15].id | https://openalex.org/C52622490 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3634335398674011 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[15].display_name | Feature extraction |
| concepts[16].id | https://openalex.org/C739882 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3611918091773987 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[16].display_name | Anomaly detection |
| concepts[17].id | https://openalex.org/C139502532 |
| concepts[17].level | 2 |
| concepts[17].score | 0.31217899918556213 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1122090 |
| concepts[17].display_name | Computational intelligence |
| concepts[18].id | https://openalex.org/C5481197 |
| concepts[18].level | 3 |
| concepts[18].score | 0.30440542101860046 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q16766476 |
| concepts[18].display_name | Decision tree learning |
| concepts[19].id | https://openalex.org/C26517878 |
| concepts[19].level | 2 |
| concepts[19].score | 0.30233287811279297 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[19].display_name | Key (lock) |
| concepts[20].id | https://openalex.org/C100660578 |
| concepts[20].level | 2 |
| concepts[20].score | 0.29959696531295776 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q18733 |
| concepts[20].display_name | Recall |
| concepts[21].id | https://openalex.org/C110083411 |
| concepts[21].level | 2 |
| concepts[21].score | 0.2865618169307709 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1744628 |
| concepts[21].display_name | Statistical classification |
| concepts[22].id | https://openalex.org/C153180895 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2860238254070282 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[22].display_name | Pattern recognition (psychology) |
| concepts[23].id | https://openalex.org/C51632099 |
| concepts[23].level | 2 |
| concepts[23].score | 0.28262853622436523 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[23].display_name | Training set |
| concepts[24].id | https://openalex.org/C175154964 |
| concepts[24].level | 3 |
| concepts[24].score | 0.27597013115882874 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q380077 |
| concepts[24].display_name | Task analysis |
| concepts[25].id | https://openalex.org/C179799912 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2706715166568756 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q205084 |
| concepts[25].display_name | Computational complexity theory |
| concepts[26].id | https://openalex.org/C311688 |
| concepts[26].level | 2 |
| concepts[26].score | 0.27050673961639404 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q2393193 |
| concepts[26].display_name | Time complexity |
| concepts[27].id | https://openalex.org/C2984634286 |
| concepts[27].level | 2 |
| concepts[27].score | 0.26816174387931824 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q1331926 |
| concepts[27].display_name | Decision process |
| concepts[28].id | https://openalex.org/C202185110 |
| concepts[28].level | 3 |
| concepts[28].score | 0.26424041390419006 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q6031086 |
| concepts[28].display_name | Information gain ratio |
| concepts[29].id | https://openalex.org/C163797641 |
| concepts[29].level | 3 |
| concepts[29].score | 0.2630882263183594 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q2067937 |
| concepts[29].display_name | Tree structure |
| concepts[30].id | https://openalex.org/C171078966 |
| concepts[30].level | 2 |
| concepts[30].score | 0.25353455543518066 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q111029 |
| concepts[30].display_name | Root (linguistics) |
| keywords[0].id | https://openalex.org/keywords/decision-tree |
| keywords[0].score | 0.5995290279388428 |
| keywords[0].display_name | Decision tree |
| keywords[1].id | https://openalex.org/keywords/context |
| keywords[1].score | 0.5439569354057312 |
| keywords[1].display_name | Context (archaeology) |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.511576235294342 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.46806442737579346 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/field |
| keywords[4].score | 0.4629853665828705 |
| keywords[4].display_name | Field (mathematics) |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.44167912006378174 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[6].score | 0.4155387282371521 |
| keywords[6].display_name | Intrusion detection system |
| keywords[7].id | https://openalex.org/keywords/tree |
| keywords[7].score | 0.40720170736312866 |
| keywords[7].display_name | Tree (set theory) |
| keywords[8].id | https://openalex.org/keywords/precision-and-recall |
| keywords[8].score | 0.39195504784584045 |
| keywords[8].display_name | Precision and recall |
| keywords[9].id | https://openalex.org/keywords/feature-selection |
| keywords[9].score | 0.37161150574684143 |
| keywords[9].display_name | Feature selection |
| language | en |
| locations[0].id | doi:10.34961/19115 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401529 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | University of Limerick Institutional Repository (University of Limerick) |
| locations[0].source.host_organization | https://openalex.org/I230495080 |
| locations[0].source.host_organization_name | University of Limerick |
| locations[0].source.host_organization_lineage | https://openalex.org/I230495080 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.34961/19115 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A4309584447 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Namjoo, Ehsan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Namjoo, Ehsan |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | O'Connor, Alison N. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | O'Connor, Alison N. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A4287132190 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Buckley, Jim |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Buckley, Jim |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A2743942940 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ryan Conor |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ryan, Conor |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.34961/19115 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-05T00:00:00 |
| display_name | GlassBoost: A lightweight and explainable classification framework for tabular datasets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-05T23:25:22.460635 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7241928577423096 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.34961/19115 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401529 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | University of Limerick Institutional Repository (University of Limerick) |
| best_oa_location.source.host_organization | https://openalex.org/I230495080 |
| best_oa_location.source.host_organization_name | University of Limerick |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I230495080 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.34961/19115 |
| primary_location.id | doi:10.34961/19115 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401529 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | University of Limerick Institutional Repository (University of Limerick) |
| primary_location.source.host_organization | https://openalex.org/I230495080 |
| primary_location.source.host_organization_name | University of Limerick |
| primary_location.source.host_organization_lineage | https://openalex.org/I230495080 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.34961/19115 |
| publication_date | 2025-06-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 89 |
| abstract_inverted_index.a | 25, 38, 54, 82, 122, 157, 181, 196, 266, 270 |
| abstract_inverted_index.d | 99, 107 |
| abstract_inverted_index.In | 244 |
| abstract_inverted_index.To | 136 |
| abstract_inverted_index.We | 189 |
| abstract_inverted_index.an | 50, 144 |
| abstract_inverted_index.by | 72 |
| abstract_inverted_index.in | 12, 19, 66, 148, 199, 211 |
| abstract_inverted_index.is | 4, 87, 93, 108 |
| abstract_inverted_index.it | 142 |
| abstract_inverted_index.of | 84, 115, 151, 186, 202, 213, 229, 246, 252, 255, 259, 269, 273 |
| abstract_inverted_index.on | 33, 53, 79 |
| abstract_inverted_index.to | 131, 143 |
| abstract_inverted_index.we | 140 |
| abstract_inverted_index.The | 44 |
| abstract_inverted_index.XAI | 27, 238 |
| abstract_inverted_index.and | 10, 42, 57, 165, 177, 183, 216, 257 |
| abstract_inverted_index.for | 6, 30 |
| abstract_inverted_index.its | 187, 192 |
| abstract_inverted_index.one | 245 |
| abstract_inverted_index.our | 171, 227, 247 |
| abstract_inverted_index.the | 63, 67, 97, 102, 112, 132, 138, 149, 200, 223 |
| abstract_inverted_index.top | 98 |
| abstract_inverted_index.SHAP | 210 |
| abstract_inverted_index.This | 22, 118 |
| abstract_inverted_index.XAI. | 203 |
| abstract_inverted_index.both | 163 |
| abstract_inverted_index.each | 73 |
| abstract_inverted_index.from | 162 |
| abstract_inverted_index.gain | 60, 104 |
| abstract_inverted_index.high | 174 |
| abstract_inverted_index.loss | 69 |
| abstract_inverted_index.many | 236 |
| abstract_inverted_index.more | 219 |
| abstract_inverted_index.only | 262 |
| abstract_inverted_index.show | 169 |
| abstract_inverted_index.task | 147 |
| abstract_inverted_index.than | 111 |
| abstract_inverted_index.that | 128, 170, 207, 233 |
| abstract_inverted_index.then | 58, 94 |
| abstract_inverted_index.tree | 76, 92, 267 |
| abstract_inverted_index.when | 17 |
| abstract_inverted_index.with | 101, 218 |
| abstract_inverted_index.(XAI) | 3 |
| abstract_inverted_index.Based | 78 |
| abstract_inverted_index.SHAP, | 195 |
| abstract_inverted_index.apply | 141 |
| abstract_inverted_index.clear | 182 |
| abstract_inverted_index.data, | 35 |
| abstract_inverted_index.depth | 272 |
| abstract_inverted_index.eight | 263 |
| abstract_inverted_index.field | 201 |
| abstract_inverted_index.first | 48 |
| abstract_inverted_index.four. | 274 |
| abstract_inverted_index.given | 55 |
| abstract_inverted_index.model | 52, 119 |
| abstract_inverted_index.novel | 26 |
| abstract_inverted_index.other | 237 |
| abstract_inverted_index.paper | 23 |
| abstract_inverted_index.tasks | 32 |
| abstract_inverted_index.terms | 212 |
| abstract_inverted_index.these | 80 |
| abstract_inverted_index.three | 224 |
| abstract_inverted_index.total | 113 |
| abstract_inverted_index.using | 96, 156, 194, 261 |
| abstract_inverted_index.where | 106 |
| abstract_inverted_index.which | 36 |
| abstract_inverted_index.while | 179, 240 |
| abstract_inverted_index.0.9843 | 260 |
| abstract_inverted_index.across | 222 |
| abstract_inverted_index.during | 75 |
| abstract_inverted_index.method | 172 |
| abstract_inverted_index.model. | 135 |
| abstract_inverted_index.models | 239 |
| abstract_inverted_index.normal | 166 |
| abstract_inverted_index.number | 114 |
| abstract_inverted_index.offers | 37 |
| abstract_inverted_index.recall | 178, 254 |
| abstract_inverted_index.review | 228 |
| abstract_inverted_index.subset | 83 |
| abstract_inverted_index.system | 28 |
| abstract_inverted_index.trains | 49 |
| abstract_inverted_index.trust, | 8 |
| abstract_inverted_index.within | 265 |
| abstract_inverted_index.yields | 121 |
| abstract_inverted_index.(IDSs), | 155 |
| abstract_inverted_index.0.9792, | 256 |
| abstract_inverted_index.0.9868, | 253 |
| abstract_inverted_index.Results | 168 |
| abstract_inverted_index.XGBoost | 51 |
| abstract_inverted_index.anomaly | 145 |
| abstract_inverted_index.applied | 18 |
| abstract_inverted_index.average | 64 |
| abstract_inverted_index.balance | 39 |
| abstract_inverted_index.between | 40 |
| abstract_inverted_index.context | 150 |
| abstract_inverted_index.dataset | 56, 158 |
| abstract_inverted_index.feature | 74 |
| abstract_inverted_index.further | 190 |
| abstract_inverted_index.highest | 103 |
| abstract_inverted_index.machine | 13 |
| abstract_inverted_index.maximum | 271 |
| abstract_inverted_index.method, | 46 |
| abstract_inverted_index.process | 127 |
| abstract_inverted_index.recall, | 215 |
| abstract_inverted_index.remains | 129 |
| abstract_inverted_index.scores, | 61, 81, 105 |
| abstract_inverted_index.shallow | 90 |
| abstract_inverted_index.smaller | 110 |
| abstract_inverted_index.splits. | 77 |
| abstract_inverted_index.system, | 139 |
| abstract_inverted_index.systems | 154 |
| abstract_inverted_index.tabular | 34 |
| abstract_inverted_index.traffic | 160 |
| abstract_inverted_index.trained | 95 |
| abstract_inverted_index.accuracy | 251 |
| abstract_inverted_index.achieved | 250 |
| abstract_inverted_index.achieves | 173 |
| abstract_inverted_index.analysis | 205 |
| abstract_inverted_index.approach | 198 |
| abstract_inverted_index.balanced | 220 |
| abstract_inverted_index.computes | 59 |
| abstract_inverted_index.decision | 91, 126 |
| abstract_inverted_index.designed | 29 |
| abstract_inverted_index.domains. | 21 |
| abstract_inverted_index.evaluate | 137 |
| abstract_inverted_index.faithful | 130 |
| abstract_inverted_index.features | 86, 100, 161, 264 |
| abstract_inverted_index.findings | 231 |
| abstract_inverted_index.function | 70 |
| abstract_inverted_index.indicate | 232 |
| abstract_inverted_index.learning | 14 |
| abstract_inverted_index.metrics. | 225 |
| abstract_inverted_index.original | 116, 133 |
| abstract_inverted_index.proposed | 45 |
| abstract_inverted_index.systems, | 15 |
| abstract_inverted_index.validate | 191 |
| abstract_inverted_index.IF–THEN | 124 |
| abstract_inverted_index.Likewise, | 226 |
| abstract_inverted_index.accuracy, | 175, 217 |
| abstract_inverted_index.detection | 146, 153 |
| abstract_inverted_index.essential | 5 |
| abstract_inverted_index.features. | 117 |
| abstract_inverted_index.fostering | 7 |
| abstract_inverted_index.intrusion | 152 |
| abstract_inverted_index.malicious | 164 |
| abstract_inverted_index.model’s | 68 |
| abstract_inverted_index.precision | 258 |
| abstract_inverted_index.providing | 180 |
| abstract_inverted_index.retaining | 241 |
| abstract_inverted_index.selected. | 88 |
| abstract_inverted_index.structure | 268 |
| abstract_inverted_index.GlassBoost | 208, 249 |
| abstract_inverted_index.Glassboost | 234 |
| abstract_inverted_index.artificial | 1 |
| abstract_inverted_index.containing | 159 |
| abstract_inverted_index.introduces | 24 |
| abstract_inverted_index.literature | 230 |
| abstract_inverted_index.precision, | 176, 214 |
| abstract_inverted_index.rule-based | 125 |
| abstract_inverted_index.Comparative | 204 |
| abstract_inverted_index.Explainable | 0 |
| abstract_inverted_index.GlassBoost, | 47 |
| abstract_inverted_index.activities. | 167 |
| abstract_inverted_index.compression | 120 |
| abstract_inverted_index.contributed | 71 |
| abstract_inverted_index.efficiency. | 243 |
| abstract_inverted_index.explanation | 185 |
| abstract_inverted_index.high-stakes | 20 |
| abstract_inverted_index.improvement | 65 |
| abstract_inverted_index.outperforms | 209, 235 |
| abstract_inverted_index.performance | 41, 221 |
| abstract_inverted_index.quantifying | 62 |
| abstract_inverted_index.significant | 85 |
| abstract_inverted_index.demonstrates | 206 |
| abstract_inverted_index.intelligence | 2 |
| abstract_inverted_index.particularly | 16 |
| abstract_inverted_index.transparent, | 123 |
| abstract_inverted_index.computational | 242 |
| abstract_inverted_index.interpretable | 184 |
| abstract_inverted_index.significantly | 109 |
| abstract_inverted_index.transparency, | 9 |
| abstract_inverted_index.accountability | 11 |
| abstract_inverted_index.classification | 31 |
| abstract_inverted_index.explainability | 193 |
| abstract_inverted_index.configurations, | 248 |
| abstract_inverted_index.high-performing | 134 |
| abstract_inverted_index.decision-making. | 188 |
| abstract_inverted_index.well-established | 197 |
| abstract_inverted_index.interpretability. | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.92053765 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |