Global Adaptive Transformer for Cross-Subject Enhanced EEG Classification Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/tnsre.2023.3285309
Due to the individual difference, EEG signals from other subjects (source) can hardly be used to decode the mental intentions of the target subject. Although transfer learning methods have shown promising results, they still suffer from poor feature representation or neglect long-range dependencies. In light of these limitations, we propose Global Adaptive Transformer (GAT), an domain adaptation method to utilize source data for cross-subject enhancement. Our method uses parallel convolution to capture temporal and spatial features first. Then, we employ a novel attention-based adaptor that implicitly transfers source features to the target domain, emphasizing the global correlation of EEG features. We also use a discriminator to explicitly drive the reduction of marginal distribution discrepancy by learning against the feature extractor and the adaptor. Besides, an adaptive center loss is designed to align the conditional distribution. With the aligned source and target features, a classifier can be optimized to decode EEG signals. Experiments on two widely used EEG datasets demonstrate that our method outperforms state-of-the-art methods, primarily due to the effectiveness of the adaptor. These results indicate that GAT has good potential to enhance the practicality of BCI.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tnsre.2023.3285309
- https://ieeexplore.ieee.org/ielx7/7333/10031624/10149036.pdf
- OA Status
- diamond
- Cited By
- 36
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380355219
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380355219Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tnsre.2023.3285309Digital Object Identifier
- Title
-
Global Adaptive Transformer for Cross-Subject Enhanced EEG ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Yonghao Song, Qingqing Zheng, Qiong Wang, Xiaorong Gao, Pheng‐Ann HengList of authors in order
- Landing page
-
https://doi.org/10.1109/tnsre.2023.3285309Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/7333/10031624/10149036.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/7333/10031624/10149036.pdfDirect OA link when available
- Concepts
-
Electroencephalography, Transformer, Computer science, Artificial intelligence, Speech recognition, Pattern recognition (psychology), Psychology, Engineering, Neuroscience, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
36Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 18, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380355219 |
|---|---|
| doi | https://doi.org/10.1109/tnsre.2023.3285309 |
| ids.doi | https://doi.org/10.1109/tnsre.2023.3285309 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37307178 |
| ids.openalex | https://openalex.org/W4380355219 |
| fwci | 9.49581909 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D004569 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Electroencephalography |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D007858 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Learning |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000069550 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Machine Learning |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D012984 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Software |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D011211 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Electric Power Supplies |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D004569 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Electroencephalography |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D007858 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Learning |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000069550 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Machine Learning |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D012984 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Software |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D011211 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Electric Power Supplies |
| type | article |
| title | Global Adaptive Transformer for Cross-Subject Enhanced EEG Classification |
| awards[0].id | https://openalex.org/G8915840718 |
| awards[0].funder_id | https://openalex.org/F4320336569 |
| awards[0].display_name | |
| awards[0].funder_award_id | JCYJ20200109114244249 |
| awards[0].funder_display_name | Shenzhen Science and Technology Innovation Program |
| awards[1].id | https://openalex.org/G4893727646 |
| awards[1].funder_id | https://openalex.org/F4320321592 |
| awards[1].display_name | |
| awards[1].funder_award_id | T45-401/22-N |
| awards[1].funder_display_name | Research Grants Council, University Grants Committee |
| awards[2].id | https://openalex.org/G821759824 |
| awards[2].funder_id | https://openalex.org/F4320334010 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2022CMG02026 |
| awards[2].funder_display_name | Key Research and Development Program of Ningxia |
| awards[3].id | https://openalex.org/G5570442708 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 62171473 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G27273596 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 62206270 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| awards[5].id | https://openalex.org/G5808581381 |
| awards[5].funder_id | https://openalex.org/F4320321001 |
| awards[5].display_name | |
| awards[5].funder_award_id | U2241208 |
| awards[5].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 31 |
| biblio.last_page | 2777 |
| biblio.first_page | 2767 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9865000247955322 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321592 |
| funders[1].ror | https://ror.org/00djwmt25 |
| funders[1].display_name | Research Grants Council, University Grants Committee |
| funders[2].id | https://openalex.org/F4320334010 |
| funders[2].ror | |
| funders[2].display_name | Key Research and Development Program of Ningxia |
| funders[3].id | https://openalex.org/F4320336569 |
| funders[3].ror | |
| funders[3].display_name | Shenzhen Science and Technology Innovation Program |
| funders[4].id | https://openalex.org/F4320338153 |
| funders[4].ror | |
| funders[4].display_name | Shenzhen Institutes of Advanced Technology Innovation Program for Excellent Young Researchers |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.595094621181488 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5549083948135376 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5192204117774963 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3952312767505646 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C28490314 |
| concepts[4].level | 1 |
| concepts[4].score | 0.384113609790802 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[4].display_name | Speech recognition |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.34531915187835693 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.22694191336631775 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.18351203203201294 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C169760540 |
| concepts[8].level | 1 |
| concepts[8].score | 0.15528926253318787 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[8].display_name | Neuroscience |
| concepts[9].id | https://openalex.org/C119599485 |
| concepts[9].level | 1 |
| concepts[9].score | 0.13327908515930176 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[9].display_name | Electrical engineering |
| concepts[10].id | https://openalex.org/C165801399 |
| concepts[10].level | 2 |
| concepts[10].score | 0.09813997149467468 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[10].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.595094621181488 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.5549083948135376 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5192204117774963 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3952312767505646 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/speech-recognition |
| keywords[4].score | 0.384113609790802 |
| keywords[4].display_name | Speech recognition |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.34531915187835693 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.22694191336631775 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.18351203203201294 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/neuroscience |
| keywords[8].score | 0.15528926253318787 |
| keywords[8].display_name | Neuroscience |
| keywords[9].id | https://openalex.org/keywords/electrical-engineering |
| keywords[9].score | 0.13327908515930176 |
| keywords[9].display_name | Electrical engineering |
| keywords[10].id | https://openalex.org/keywords/voltage |
| keywords[10].score | 0.09813997149467468 |
| keywords[10].display_name | Voltage |
| language | en |
| locations[0].id | doi:10.1109/tnsre.2023.3285309 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S98183460 |
| locations[0].source.issn | 1534-4320, 1558-0210 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1534-4320 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/7333/10031624/10149036.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| locations[0].landing_page_url | https://doi.org/10.1109/tnsre.2023.3285309 |
| locations[1].id | pmid:37307178 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37307178 |
| locations[2].id | pmh:oai:doaj.org/article:5a8129eec72943259361212b3e5f05cd |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 31, Pp 2767-2777 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/5a8129eec72943259361212b3e5f05cd |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101557904 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1700-1133 |
| authorships[0].author.display_name | Yonghao Song |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I99065089 |
| authorships[0].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yonghao Song |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5022441060 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7726-1901 |
| authorships[1].author.display_name | Qingqing Zheng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[1].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[1].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qingqing Zheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| authorships[2].author.id | https://openalex.org/A5100417373 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0835-3770 |
| authorships[2].author.display_name | Qiong Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[2].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[2].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiong Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| authorships[3].author.id | https://openalex.org/A5000766901 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0499-2740 |
| authorships[3].author.display_name | Xiaorong Gao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I99065089 |
| authorships[3].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tsinghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaorong Gao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5032708386 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3055-5034 |
| authorships[4].author.display_name | Pheng‐Ann Heng |
| authorships[4].countries | CN, HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I177725633 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering and Institute of Medical Intelligence and XR, The Chinese University of Hong Kong, Hong Kong, China |
| authorships[4].institutions[0].id | https://openalex.org/I19820366 |
| authorships[4].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[4].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[4].institutions[2].id | https://openalex.org/I177725633 |
| authorships[4].institutions[2].ror | https://ror.org/00t33hh48 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I177725633 |
| authorships[4].institutions[2].country_code | HK |
| authorships[4].institutions[2].display_name | Chinese University of Hong Kong |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Pheng-Ann Heng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Engineering and Institute of Medical Intelligence and XR, The Chinese University of Hong Kong, Hong Kong, China, Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/7333/10031624/10149036.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Global Adaptive Transformer for Cross-Subject Enhanced EEG Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2922348724, https://openalex.org/W200322357, https://openalex.org/W2130428257, https://openalex.org/W4308951944, https://openalex.org/W2057366091, https://openalex.org/W4312960290, https://openalex.org/W2049513647, https://openalex.org/W2988848585, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 36 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 18 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/tnsre.2023.3285309 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S98183460 |
| best_oa_location.source.issn | 1534-4320, 1558-0210 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1534-4320 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/7333/10031624/10149036.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tnsre.2023.3285309 |
| primary_location.id | doi:10.1109/tnsre.2023.3285309 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S98183460 |
| primary_location.source.issn | 1534-4320, 1558-0210 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1534-4320 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/7333/10031624/10149036.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| primary_location.landing_page_url | https://doi.org/10.1109/tnsre.2023.3285309 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2982126608, https://openalex.org/W1547702425, https://openalex.org/W3047208690, https://openalex.org/W6735913928, https://openalex.org/W2741907166, https://openalex.org/W2760834907, https://openalex.org/W4280581470, https://openalex.org/W1996167318, https://openalex.org/W3131500599, https://openalex.org/W3138516171, https://openalex.org/W4376121133, https://openalex.org/W4316660747, https://openalex.org/W4229068725, https://openalex.org/W3170753307, https://openalex.org/W3167195439, https://openalex.org/W2792724009, https://openalex.org/W4214809163, https://openalex.org/W2559463885, https://openalex.org/W2888355470, https://openalex.org/W2132360759, https://openalex.org/W3046051368, https://openalex.org/W2746829572, https://openalex.org/W4296027702, https://openalex.org/W3115305254, https://openalex.org/W3080222908, https://openalex.org/W3100059780, https://openalex.org/W3017642177, https://openalex.org/W2963727766, https://openalex.org/W3041698047, https://openalex.org/W3210269077, https://openalex.org/W6739901393, https://openalex.org/W3131225866, https://openalex.org/W4316655758, https://openalex.org/W4288061928, https://openalex.org/W3195947465, https://openalex.org/W3082367983, https://openalex.org/W4304481492, https://openalex.org/W4309164566, https://openalex.org/W4282829678, https://openalex.org/W4321021843, https://openalex.org/W4295521014, https://openalex.org/W4385245566, https://openalex.org/W3102455230, https://openalex.org/W4320013936, https://openalex.org/W2187089797 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 80, 103, 142 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.We | 100 |
| abstract_inverted_index.an | 54, 124 |
| abstract_inverted_index.be | 13, 145 |
| abstract_inverted_index.by | 114 |
| abstract_inverted_index.is | 128 |
| abstract_inverted_index.of | 20, 45, 97, 110, 170, 185 |
| abstract_inverted_index.on | 152 |
| abstract_inverted_index.or | 39 |
| abstract_inverted_index.to | 1, 15, 58, 70, 89, 105, 130, 147, 167, 181 |
| abstract_inverted_index.we | 48, 78 |
| abstract_inverted_index.Due | 0 |
| abstract_inverted_index.EEG | 5, 98, 149, 156 |
| abstract_inverted_index.GAT | 177 |
| abstract_inverted_index.Our | 65 |
| abstract_inverted_index.and | 73, 120, 139 |
| abstract_inverted_index.can | 11, 144 |
| abstract_inverted_index.due | 166 |
| abstract_inverted_index.for | 62 |
| abstract_inverted_index.has | 178 |
| abstract_inverted_index.our | 160 |
| abstract_inverted_index.the | 2, 17, 21, 90, 94, 108, 117, 121, 132, 136, 168, 171, 183 |
| abstract_inverted_index.two | 153 |
| abstract_inverted_index.use | 102 |
| abstract_inverted_index.BCI. | 186 |
| abstract_inverted_index.With | 135 |
| abstract_inverted_index.also | 101 |
| abstract_inverted_index.data | 61 |
| abstract_inverted_index.from | 7, 35 |
| abstract_inverted_index.good | 179 |
| abstract_inverted_index.have | 28 |
| abstract_inverted_index.loss | 127 |
| abstract_inverted_index.poor | 36 |
| abstract_inverted_index.that | 84, 159, 176 |
| abstract_inverted_index.they | 32 |
| abstract_inverted_index.used | 14, 155 |
| abstract_inverted_index.uses | 67 |
| abstract_inverted_index.Then, | 77 |
| abstract_inverted_index.These | 173 |
| abstract_inverted_index.align | 131 |
| abstract_inverted_index.drive | 107 |
| abstract_inverted_index.light | 44 |
| abstract_inverted_index.novel | 81 |
| abstract_inverted_index.other | 8 |
| abstract_inverted_index.shown | 29 |
| abstract_inverted_index.still | 33 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.(GAT), | 53 |
| abstract_inverted_index.Global | 50 |
| abstract_inverted_index.center | 126 |
| abstract_inverted_index.decode | 16, 148 |
| abstract_inverted_index.domain | 55 |
| abstract_inverted_index.employ | 79 |
| abstract_inverted_index.first. | 76 |
| abstract_inverted_index.global | 95 |
| abstract_inverted_index.hardly | 12 |
| abstract_inverted_index.mental | 18 |
| abstract_inverted_index.method | 57, 66, 161 |
| abstract_inverted_index.source | 60, 87, 138 |
| abstract_inverted_index.suffer | 34 |
| abstract_inverted_index.target | 22, 91, 140 |
| abstract_inverted_index.widely | 154 |
| abstract_inverted_index.adaptor | 83 |
| abstract_inverted_index.against | 116 |
| abstract_inverted_index.aligned | 137 |
| abstract_inverted_index.capture | 71 |
| abstract_inverted_index.domain, | 92 |
| abstract_inverted_index.enhance | 182 |
| abstract_inverted_index.feature | 37, 118 |
| abstract_inverted_index.methods | 27 |
| abstract_inverted_index.neglect | 40 |
| abstract_inverted_index.propose | 49 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.signals | 6 |
| abstract_inverted_index.spatial | 74 |
| abstract_inverted_index.utilize | 59 |
| abstract_inverted_index.(source) | 10 |
| abstract_inverted_index.Adaptive | 51 |
| abstract_inverted_index.Although | 24 |
| abstract_inverted_index.Besides, | 123 |
| abstract_inverted_index.adaptive | 125 |
| abstract_inverted_index.adaptor. | 122, 172 |
| abstract_inverted_index.datasets | 157 |
| abstract_inverted_index.designed | 129 |
| abstract_inverted_index.features | 75, 88 |
| abstract_inverted_index.indicate | 175 |
| abstract_inverted_index.learning | 26, 115 |
| abstract_inverted_index.marginal | 111 |
| abstract_inverted_index.methods, | 164 |
| abstract_inverted_index.parallel | 68 |
| abstract_inverted_index.results, | 31 |
| abstract_inverted_index.signals. | 150 |
| abstract_inverted_index.subject. | 23 |
| abstract_inverted_index.subjects | 9 |
| abstract_inverted_index.temporal | 72 |
| abstract_inverted_index.transfer | 25 |
| abstract_inverted_index.extractor | 119 |
| abstract_inverted_index.features, | 141 |
| abstract_inverted_index.features. | 99 |
| abstract_inverted_index.optimized | 146 |
| abstract_inverted_index.potential | 180 |
| abstract_inverted_index.primarily | 165 |
| abstract_inverted_index.promising | 30 |
| abstract_inverted_index.reduction | 109 |
| abstract_inverted_index.transfers | 86 |
| abstract_inverted_index.adaptation | 56 |
| abstract_inverted_index.classifier | 143 |
| abstract_inverted_index.explicitly | 106 |
| abstract_inverted_index.implicitly | 85 |
| abstract_inverted_index.individual | 3 |
| abstract_inverted_index.intentions | 19 |
| abstract_inverted_index.long-range | 41 |
| abstract_inverted_index.Experiments | 151 |
| abstract_inverted_index.Transformer | 52 |
| abstract_inverted_index.conditional | 133 |
| abstract_inverted_index.convolution | 69 |
| abstract_inverted_index.correlation | 96 |
| abstract_inverted_index.demonstrate | 158 |
| abstract_inverted_index.difference, | 4 |
| abstract_inverted_index.discrepancy | 113 |
| abstract_inverted_index.emphasizing | 93 |
| abstract_inverted_index.outperforms | 162 |
| abstract_inverted_index.distribution | 112 |
| abstract_inverted_index.enhancement. | 64 |
| abstract_inverted_index.limitations, | 47 |
| abstract_inverted_index.practicality | 184 |
| abstract_inverted_index.cross-subject | 63 |
| abstract_inverted_index.dependencies. | 42 |
| abstract_inverted_index.discriminator | 104 |
| abstract_inverted_index.distribution. | 134 |
| abstract_inverted_index.effectiveness | 169 |
| abstract_inverted_index.representation | 38 |
| abstract_inverted_index.attention-based | 82 |
| abstract_inverted_index.state-of-the-art | 163 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.98102246 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |