Global Atmospheric Simulation Using The Super-Parameterized Community Atmosphere Model Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.1246856
A 1-month subset from a global atmospheric simulation using the Super-Parameterized Community Atmosphere Model (SP-CAM), which implements the Multi-scale Modeling Framework (MMF) described in Khairoutdinov and Randall (2001) and Khairoutdinov et al. (2005). The version of the SP-CAM used here is described in Marchand et al. (2009) and Ovtchinnikov et al (2006), and was run at Pacific Northwest National Laboratory with DOE support. It is based on CAM 3.0 for the global atmospheric component, and uses the System for Atmospheric Modeling (SAM; Khairoutdinov and Randall 2003). This simulation is configured with CAM running the finite volume dynamical core on a 2x2.5 degree latitude-longitude grid with 26 vertical levels. The embedded CRM (SAM) is configured with 64 horizontal columns at 4 km grid spacing with 24 vertical levels (sharing the bottom 24 levels with the CAM grid), and single-moment microphysics. The simulation was initialized on 1 September 1997 and runs through June 2002, forced with observed monthly-mean sea surface temperatures. Only the month of July 2000 is uploaded here, which is what is required to reproduce the results in Hillman et al. (2018).
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.1246856
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393701985
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393701985Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.1246856Digital Object Identifier
- Title
-
Global Atmospheric Simulation Using The Super-Parameterized Community Atmosphere ModelWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-05-21Full publication date if available
- Authors
-
Benjamin Hillman, Roger Marchand, Thomas P. AckermanList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.1246856Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.1246856Direct OA link when available
- Concepts
-
Parameterized complexity, Atmosphere (unit), Environmental science, Meteorology, Atmospheric sciences, Atmospheric model, Atmospheric models, Computer science, Astrobiology, Geography, Geology, Algorithm, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393701985 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.1246856 |
| ids.doi | https://doi.org/10.5281/zenodo.1246856 |
| ids.openalex | https://openalex.org/W4393701985 |
| fwci | |
| type | dataset |
| title | Global Atmospheric Simulation Using The Super-Parameterized Community Atmosphere Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.8840000033378601 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165464430 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8094580173492432 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[0].display_name | Parameterized complexity |
| concepts[1].id | https://openalex.org/C65440619 |
| concepts[1].level | 2 |
| concepts[1].score | 0.760303258895874 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q177974 |
| concepts[1].display_name | Atmosphere (unit) |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5429205298423767 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C153294291 |
| concepts[3].level | 1 |
| concepts[3].score | 0.47582724690437317 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[3].display_name | Meteorology |
| concepts[4].id | https://openalex.org/C91586092 |
| concepts[4].level | 1 |
| concepts[4].score | 0.45465871691703796 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q757520 |
| concepts[4].display_name | Atmospheric sciences |
| concepts[5].id | https://openalex.org/C118365302 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4290595054626465 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4817115 |
| concepts[5].display_name | Atmospheric model |
| concepts[6].id | https://openalex.org/C62279395 |
| concepts[6].level | 3 |
| concepts[6].score | 0.42229220271110535 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4817115 |
| concepts[6].display_name | Atmospheric models |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.38905179500579834 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C87355193 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3346083462238312 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q411 |
| concepts[8].display_name | Astrobiology |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20288562774658203 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C127313418 |
| concepts[10].level | 0 |
| concepts[10].score | 0.16848400235176086 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[10].display_name | Geology |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.16234564781188965 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1428801417350769 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[0].score | 0.8094580173492432 |
| keywords[0].display_name | Parameterized complexity |
| keywords[1].id | https://openalex.org/keywords/atmosphere |
| keywords[1].score | 0.760303258895874 |
| keywords[1].display_name | Atmosphere (unit) |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.5429205298423767 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/meteorology |
| keywords[3].score | 0.47582724690437317 |
| keywords[3].display_name | Meteorology |
| keywords[4].id | https://openalex.org/keywords/atmospheric-sciences |
| keywords[4].score | 0.45465871691703796 |
| keywords[4].display_name | Atmospheric sciences |
| keywords[5].id | https://openalex.org/keywords/atmospheric-model |
| keywords[5].score | 0.4290595054626465 |
| keywords[5].display_name | Atmospheric model |
| keywords[6].id | https://openalex.org/keywords/atmospheric-models |
| keywords[6].score | 0.42229220271110535 |
| keywords[6].display_name | Atmospheric models |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.38905179500579834 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/astrobiology |
| keywords[8].score | 0.3346083462238312 |
| keywords[8].display_name | Astrobiology |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.20288562774658203 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/geology |
| keywords[10].score | 0.16848400235176086 |
| keywords[10].display_name | Geology |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.16234564781188965 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.1428801417350769 |
| keywords[12].display_name | Physics |
| language | en |
| locations[0].id | doi:10.5281/zenodo.1246856 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.1246856 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5073888408 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9264-9872 |
| authorships[0].author.display_name | Benjamin Hillman |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210104735 |
| authorships[0].affiliations[0].raw_affiliation_string | Sandia National Laboratories |
| authorships[0].institutions[0].id | https://openalex.org/I4210104735 |
| authorships[0].institutions[0].ror | https://ror.org/01apwpt12 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210104735 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Sandia National Laboratories |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Benjamin Hillman |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sandia National Laboratories |
| authorships[1].author.id | https://openalex.org/A5030596273 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5218-6762 |
| authorships[1].author.display_name | Roger Marchand |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Washington |
| authorships[1].institutions[0].id | https://openalex.org/I201448701 |
| authorships[1].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Washington |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Roger Marchand |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Washington |
| authorships[2].author.id | https://openalex.org/A5020591290 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5259-964X |
| authorships[2].author.display_name | Thomas P. Ackerman |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I201448701 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Washington |
| authorships[2].institutions[0].id | https://openalex.org/I201448701 |
| authorships[2].institutions[0].ror | https://ror.org/00cvxb145 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I201448701 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Washington |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Thomas Ackerman |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Washington |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.1246856 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Global Atmospheric Simulation Using The Super-Parameterized Community Atmosphere Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.8840000033378601 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W4200000791, https://openalex.org/W2901562756, https://openalex.org/W4283643440, https://openalex.org/W3172601739, https://openalex.org/W2079948802, https://openalex.org/W4361280632, https://openalex.org/W1985320441, https://openalex.org/W3089935139, https://openalex.org/W3093106960, https://openalex.org/W2084929824 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.1246856 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.1246856 |
| primary_location.id | doi:10.5281/zenodo.1246856 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.1246856 |
| publication_date | 2018-05-21 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 144 |
| abstract_inverted_index.4 | 119 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 4, 99 |
| abstract_inverted_index.24 | 124, 130 |
| abstract_inverted_index.26 | 105 |
| abstract_inverted_index.64 | 115 |
| abstract_inverted_index.It | 63 |
| abstract_inverted_index.al | 50 |
| abstract_inverted_index.at | 55, 118 |
| abstract_inverted_index.et | 30, 44, 49, 179 |
| abstract_inverted_index.in | 23, 42, 177 |
| abstract_inverted_index.is | 40, 64, 88, 112, 165, 169, 171 |
| abstract_inverted_index.km | 120 |
| abstract_inverted_index.of | 35, 162 |
| abstract_inverted_index.on | 66, 98, 143 |
| abstract_inverted_index.to | 173 |
| abstract_inverted_index.3.0 | 68 |
| abstract_inverted_index.CAM | 67, 91, 134 |
| abstract_inverted_index.CRM | 110 |
| abstract_inverted_index.DOE | 61 |
| abstract_inverted_index.The | 33, 108, 139 |
| abstract_inverted_index.al. | 31, 45, 180 |
| abstract_inverted_index.and | 25, 28, 47, 52, 74, 83, 136, 147 |
| abstract_inverted_index.for | 69, 78 |
| abstract_inverted_index.run | 54 |
| abstract_inverted_index.sea | 156 |
| abstract_inverted_index.the | 9, 17, 36, 70, 76, 93, 128, 133, 160, 175 |
| abstract_inverted_index.was | 53, 141 |
| abstract_inverted_index.1997 | 146 |
| abstract_inverted_index.2000 | 164 |
| abstract_inverted_index.July | 163 |
| abstract_inverted_index.June | 150 |
| abstract_inverted_index.Only | 159 |
| abstract_inverted_index.This | 86 |
| abstract_inverted_index.core | 97 |
| abstract_inverted_index.from | 3 |
| abstract_inverted_index.grid | 103, 121 |
| abstract_inverted_index.here | 39 |
| abstract_inverted_index.runs | 148 |
| abstract_inverted_index.used | 38 |
| abstract_inverted_index.uses | 75 |
| abstract_inverted_index.what | 170 |
| abstract_inverted_index.with | 60, 90, 104, 114, 123, 132, 153 |
| abstract_inverted_index.(MMF) | 21 |
| abstract_inverted_index.(SAM) | 111 |
| abstract_inverted_index.(SAM; | 81 |
| abstract_inverted_index.2002, | 151 |
| abstract_inverted_index.2x2.5 | 100 |
| abstract_inverted_index.Model | 13 |
| abstract_inverted_index.based | 65 |
| abstract_inverted_index.here, | 167 |
| abstract_inverted_index.month | 161 |
| abstract_inverted_index.using | 8 |
| abstract_inverted_index.which | 15, 168 |
| abstract_inverted_index.(2001) | 27 |
| abstract_inverted_index.(2009) | 46 |
| abstract_inverted_index.2003). | 85 |
| abstract_inverted_index.SP-CAM | 37 |
| abstract_inverted_index.System | 77 |
| abstract_inverted_index.bottom | 129 |
| abstract_inverted_index.degree | 101 |
| abstract_inverted_index.finite | 94 |
| abstract_inverted_index.forced | 152 |
| abstract_inverted_index.global | 5, 71 |
| abstract_inverted_index.grid), | 135 |
| abstract_inverted_index.levels | 126, 131 |
| abstract_inverted_index.subset | 2 |
| abstract_inverted_index.volume | 95 |
| abstract_inverted_index.(2005). | 32 |
| abstract_inverted_index.(2006), | 51 |
| abstract_inverted_index.(2018). | 181 |
| abstract_inverted_index.1-month | 1 |
| abstract_inverted_index.Hillman | 178 |
| abstract_inverted_index.Pacific | 56 |
| abstract_inverted_index.Randall | 26, 84 |
| abstract_inverted_index.columns | 117 |
| abstract_inverted_index.levels. | 107 |
| abstract_inverted_index.results | 176 |
| abstract_inverted_index.running | 92 |
| abstract_inverted_index.spacing | 122 |
| abstract_inverted_index.surface | 157 |
| abstract_inverted_index.through | 149 |
| abstract_inverted_index.version | 34 |
| abstract_inverted_index.(sharing | 127 |
| abstract_inverted_index.Marchand | 43 |
| abstract_inverted_index.Modeling | 19, 80 |
| abstract_inverted_index.National | 58 |
| abstract_inverted_index.embedded | 109 |
| abstract_inverted_index.observed | 154 |
| abstract_inverted_index.required | 172 |
| abstract_inverted_index.support. | 62 |
| abstract_inverted_index.uploaded | 166 |
| abstract_inverted_index.vertical | 106, 125 |
| abstract_inverted_index.(SP-CAM), | 14 |
| abstract_inverted_index.Community | 11 |
| abstract_inverted_index.Framework | 20 |
| abstract_inverted_index.Northwest | 57 |
| abstract_inverted_index.September | 145 |
| abstract_inverted_index.described | 22, 41 |
| abstract_inverted_index.dynamical | 96 |
| abstract_inverted_index.reproduce | 174 |
| abstract_inverted_index.Atmosphere | 12 |
| abstract_inverted_index.Laboratory | 59 |
| abstract_inverted_index.component, | 73 |
| abstract_inverted_index.configured | 89, 113 |
| abstract_inverted_index.horizontal | 116 |
| abstract_inverted_index.implements | 16 |
| abstract_inverted_index.simulation | 7, 87, 140 |
| abstract_inverted_index.Atmospheric | 79 |
| abstract_inverted_index.Multi-scale | 18 |
| abstract_inverted_index.atmospheric | 6, 72 |
| abstract_inverted_index.initialized | 142 |
| abstract_inverted_index.Ovtchinnikov | 48 |
| abstract_inverted_index.monthly-mean | 155 |
| abstract_inverted_index.Khairoutdinov | 24, 29, 82 |
| abstract_inverted_index.microphysics. | 138 |
| abstract_inverted_index.single-moment | 137 |
| abstract_inverted_index.temperatures. | 158 |
| abstract_inverted_index.latitude-longitude | 102 |
| abstract_inverted_index.Super-Parameterized | 10 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |