Global Carbon Fluxes Using Multioutput Gaussian Processes Regression and MODIS Products Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/jstars.2024.3413184
The quantification of carbon fluxes (CFs) is crucial due to their role in the global carbon cycle having a direct impact on Earth's climate. In the last years, considerable efforts have been made to scale CFs from eddy covariance (EC) data to the globe. In this work, a data-driven approach that exploits a multioutput Gaussian processes regression algorithm (-model) is proposed to jointly estimate gross primary production (GPP), terrestrial ecosystem respiration (TER), and net ecosystem exchange (NEE) at a global scale. The -model not only provides an estimate of the CFs but also an uncertainty. Moreover, it derives the three fluxes jointly preserving their physical relationship. The predictors are selected from a set of the moderate-resolution imaging spectroradiometer (MODIS) products available on Google Earth engine. The performance of the model revealed high accuracies (R2 reaching 0.82, 0.69, and 0.80 in the case of GPP, NEE, and TER, respectively), and low root mean square errors (1.55 g m−2 d−1 in the case of GPP, 1.09 g m−2 d−1 for the NEE, and 1.14 g m−2 d−1 for TER) over the FLUXNET2015 data set at eight-day time scale. The GPP estimates provided by -model outperformed the MOD17A2 product, and a state-of-the-art GPP product (PML_V2) without using meteorological forcing data sets. The results reported mean annual amounts of 133.7, 114.8, and 18.9 Pg yr−1 for GPP, TER, and NEE, respectively, during the 2002–2023 period. The proposed approach paves the way for the development of multioutput strategies that preserve the physical relationships among CFs in upscaling processes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jstars.2024.3413184
- OA Status
- gold
- Cited By
- 5
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399563215
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399563215Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jstars.2024.3413184Digital Object Identifier
- Title
-
Global Carbon Fluxes Using Multioutput Gaussian Processes Regression and MODIS ProductsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Manuel Campos‐Taberner, María Amparo Gilabert Navarro, Sergio Sánchez-Ruíz, Beatriz Martínez, Adrián Jiménez-Guisado, Francisco Javier Garcı́a-Haro, Luis GuanterList of authors in order
- Landing page
-
https://doi.org/10.1109/jstars.2024.3413184Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jstars.2024.3413184Direct OA link when available
- Concepts
-
Gaussian process, Regression, Carbon flux, Remote sensing, Environmental science, Atmospheric model, Kriging, Gaussian, Computer science, Meteorology, Statistics, Mathematics, Machine learning, Ecosystem, Geology, Physics, Biology, Quantum mechanics, EcologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399563215 |
|---|---|
| doi | https://doi.org/10.1109/jstars.2024.3413184 |
| ids.doi | https://doi.org/10.1109/jstars.2024.3413184 |
| ids.openalex | https://openalex.org/W4399563215 |
| fwci | 2.86892055 |
| type | article |
| title | Global Carbon Fluxes Using Multioutput Gaussian Processes Regression and MODIS Products |
| biblio.issue | |
| biblio.volume | 17 |
| biblio.last_page | 11321 |
| biblio.first_page | 11310 |
| topics[0].id | https://openalex.org/T11588 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Atmospheric and Environmental Gas Dynamics |
| topics[1].id | https://openalex.org/T10111 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9735000133514404 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Remote Sensing in Agriculture |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9358999729156494 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| is_xpac | False |
| apc_list.value | 1250 |
| apc_list.currency | USD |
| apc_list.value_usd | 1250 |
| apc_paid.value | 1250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1250 |
| concepts[0].id | https://openalex.org/C61326573 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5862274765968323 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[0].display_name | Gaussian process |
| concepts[1].id | https://openalex.org/C83546350 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4576624035835266 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[1].display_name | Regression |
| concepts[2].id | https://openalex.org/C2993678126 |
| concepts[2].level | 3 |
| concepts[2].score | 0.45493894815444946 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q167751 |
| concepts[2].display_name | Carbon flux |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4520622491836548 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.44314640760421753 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C118365302 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4278026223182678 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4817115 |
| concepts[5].display_name | Atmospheric model |
| concepts[6].id | https://openalex.org/C81692654 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41559192538261414 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[6].display_name | Kriging |
| concepts[7].id | https://openalex.org/C163716315 |
| concepts[7].level | 2 |
| concepts[7].score | 0.40910714864730835 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[7].display_name | Gaussian |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3760286271572113 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C153294291 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3019922971725464 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[9].display_name | Meteorology |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22144275903701782 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.20747411251068115 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.15168598294258118 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C110872660 |
| concepts[13].level | 2 |
| concepts[13].score | 0.12216296792030334 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q37813 |
| concepts[13].display_name | Ecosystem |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.09828540682792664 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08923456072807312 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C18903297 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[18].display_name | Ecology |
| keywords[0].id | https://openalex.org/keywords/gaussian-process |
| keywords[0].score | 0.5862274765968323 |
| keywords[0].display_name | Gaussian process |
| keywords[1].id | https://openalex.org/keywords/regression |
| keywords[1].score | 0.4576624035835266 |
| keywords[1].display_name | Regression |
| keywords[2].id | https://openalex.org/keywords/carbon-flux |
| keywords[2].score | 0.45493894815444946 |
| keywords[2].display_name | Carbon flux |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.4520622491836548 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.44314640760421753 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/atmospheric-model |
| keywords[5].score | 0.4278026223182678 |
| keywords[5].display_name | Atmospheric model |
| keywords[6].id | https://openalex.org/keywords/kriging |
| keywords[6].score | 0.41559192538261414 |
| keywords[6].display_name | Kriging |
| keywords[7].id | https://openalex.org/keywords/gaussian |
| keywords[7].score | 0.40910714864730835 |
| keywords[7].display_name | Gaussian |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.3760286271572113 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/meteorology |
| keywords[9].score | 0.3019922971725464 |
| keywords[9].display_name | Meteorology |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.22144275903701782 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.20747411251068115 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.15168598294258118 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/ecosystem |
| keywords[13].score | 0.12216296792030334 |
| keywords[13].display_name | Ecosystem |
| keywords[14].id | https://openalex.org/keywords/geology |
| keywords[14].score | 0.09828540682792664 |
| keywords[14].display_name | Geology |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.08923456072807312 |
| keywords[15].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1109/jstars.2024.3413184 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S117727964 |
| locations[0].source.issn | 1939-1404, 2151-1535 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1939-1404 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1109/jstars.2024.3413184 |
| locations[1].id | pmh:oai:doaj.org/article:62f278765b2840abb4cb111463d9d38a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 17, Pp 11310-11321 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/62f278765b2840abb4cb111463d9d38a |
| locations[2].id | pmh:oai:roderic.uv.es:10550/104666 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400245 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Repository of Digital Objects for Teaching Research and Culture (University of Valencia) |
| locations[2].source.host_organization | https://openalex.org/I16097986 |
| locations[2].source.host_organization_name | Universitat de València |
| locations[2].source.host_organization_lineage | https://openalex.org/I16097986 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | journal article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Campos Taberner, Manuel Gilabert, M. A. Sánchez Ruiz, S. Martínez, B. Jiménez Guisado, A. García Haro, F. J. Guanter, Luis 2024 Global carbon fluxes using multioutput Gaussian processes regression and MODIS products Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing 17 1 24 |
| locations[2].landing_page_url | https://hdl.handle.net/10550/104666 |
| locations[3].id | pmh:oai:roderic.uv.es:10550/104674 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400245 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Repository of Digital Objects for Teaching Research and Culture (University of Valencia) |
| locations[3].source.host_organization | https://openalex.org/I16097986 |
| locations[3].source.host_organization_name | Universitat de València |
| locations[3].source.host_organization_lineage | https://openalex.org/I16097986 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | journal article |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Campos Taberner, Manuel Gilabert Navarro, María Desamparados Sánchez-Ruiz, Sergio Martínez Díaz, Beatriz Jiménez-Guisado, Adrián García Haro, Francisco Javier Guanter, Luis 2024 Global carbon fluxes using multioutput Gaussian processes regression and MODIS products Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing 17 11310 11321 |
| locations[3].landing_page_url | https://hdl.handle.net/10550/104674 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5047808140 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5929-3942 |
| authorships[0].author.display_name | Manuel Campos‐Taberner |
| authorships[0].affiliations[0].raw_affiliation_string | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Manuel Campos-Taberner |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[1].author.id | https://openalex.org/A5087778885 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3548-1524 |
| authorships[1].author.display_name | María Amparo Gilabert Navarro |
| authorships[1].affiliations[0].raw_affiliation_string | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | María Amparo Gilabert |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[2].author.id | https://openalex.org/A5022506820 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4849-9918 |
| authorships[2].author.display_name | Sergio Sánchez-Ruíz |
| authorships[2].affiliations[0].raw_affiliation_string | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sergio Sánchez-Ruiz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[3].author.id | https://openalex.org/A5086597431 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6354-9899 |
| authorships[3].author.display_name | Beatriz Martínez |
| authorships[3].affiliations[0].raw_affiliation_string | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Beatriz Martínez |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[4].author.id | https://openalex.org/A5093076314 |
| authorships[4].author.orcid | https://orcid.org/0009-0005-9691-5567 |
| authorships[4].author.display_name | Adrián Jiménez-Guisado |
| authorships[4].affiliations[0].raw_affiliation_string | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Adrián Jiménez-Guisado |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[5].author.id | https://openalex.org/A5030690607 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5888-0061 |
| authorships[5].author.display_name | Francisco Javier Garcı́a-Haro |
| authorships[5].affiliations[0].raw_affiliation_string | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Francisco Javier García-Haro |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Environmental Remote Sensing Group (UV-ERS), Universitat de València, València, Spain |
| authorships[6].author.id | https://openalex.org/A5080250417 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8389-5764 |
| authorships[6].author.display_name | Luis Guanter |
| authorships[6].affiliations[0].raw_affiliation_string | Land and Atmosphere Remote Sensing Group (LARS), Universitat Politècnica de València, Valencia, Spain |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Luis Guanter |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Land and Atmosphere Remote Sensing Group (LARS), Universitat Politècnica de València, Valencia, Spain |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jstars.2024.3413184 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Global Carbon Fluxes Using Multioutput Gaussian Processes Regression and MODIS Products |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11588 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Atmospheric and Environmental Gas Dynamics |
| related_works | https://openalex.org/W566010457, https://openalex.org/W2600092203, https://openalex.org/W4293503520, https://openalex.org/W4300066510, https://openalex.org/W4406204722, https://openalex.org/W2056958800, https://openalex.org/W2803685231, https://openalex.org/W3134152097, https://openalex.org/W4311388919, https://openalex.org/W2966696655 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1109/jstars.2024.3413184 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S117727964 |
| best_oa_location.source.issn | 1939-1404, 2151-1535 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1939-1404 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jstars.2024.3413184 |
| primary_location.id | doi:10.1109/jstars.2024.3413184 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S117727964 |
| primary_location.source.issn | 1939-1404, 2151-1535 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1939-1404 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1109/jstars.2024.3413184 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2765724720, https://openalex.org/W2903769183, https://openalex.org/W2010439382, https://openalex.org/W2338049369, https://openalex.org/W2180426220, https://openalex.org/W1966715855, https://openalex.org/W2035962295, https://openalex.org/W6892272739, https://openalex.org/W2991114489, https://openalex.org/W2950734190, https://openalex.org/W2989912342, https://openalex.org/W2762155383, https://openalex.org/W4213182759, https://openalex.org/W2142967622, https://openalex.org/W2298779432, https://openalex.org/W2597128531, https://openalex.org/W2907203129, https://openalex.org/W2978485176, https://openalex.org/W4364368096, https://openalex.org/W2162421262, https://openalex.org/W2793366784, https://openalex.org/W2124437404, https://openalex.org/W2888591157, https://openalex.org/W3211873726, https://openalex.org/W3130461578, https://openalex.org/W4313443393, https://openalex.org/W4211049957, https://openalex.org/W3093130013, https://openalex.org/W4200250536, https://openalex.org/W3034109669, https://openalex.org/W2154700052, https://openalex.org/W2073746712, https://openalex.org/W2020216002, https://openalex.org/W2079282790, https://openalex.org/W4230083568, https://openalex.org/W2766496462, https://openalex.org/W4210561111, https://openalex.org/W4383311370, https://openalex.org/W3095448964, https://openalex.org/W3089027435, https://openalex.org/W4388263964, https://openalex.org/W2120924194, https://openalex.org/W2134979379, https://openalex.org/W2777952969, https://openalex.org/W2017221919, https://openalex.org/W3032502594, https://openalex.org/W2552476515 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 18, 47, 52, 79, 113, 200 |
| abstract_inverted_index.g | 157, 166, 174 |
| abstract_inverted_index.In | 24, 44 |
| abstract_inverted_index.Pg | 222 |
| abstract_inverted_index.an | 88, 95 |
| abstract_inverted_index.at | 78, 184 |
| abstract_inverted_index.by | 192 |
| abstract_inverted_index.in | 12, 141, 160, 253 |
| abstract_inverted_index.is | 6, 60 |
| abstract_inverted_index.it | 98 |
| abstract_inverted_index.of | 2, 90, 115, 129, 144, 163, 217, 243 |
| abstract_inverted_index.on | 21, 123 |
| abstract_inverted_index.to | 9, 33, 41, 62 |
| abstract_inverted_index.CFs | 35, 92, 252 |
| abstract_inverted_index.GPP | 189, 202 |
| abstract_inverted_index.The | 0, 82, 108, 127, 188, 211, 234 |
| abstract_inverted_index.and | 73, 139, 147, 150, 172, 199, 220, 227 |
| abstract_inverted_index.are | 110 |
| abstract_inverted_index.but | 93 |
| abstract_inverted_index.due | 8 |
| abstract_inverted_index.for | 169, 177, 224, 240 |
| abstract_inverted_index.low | 151 |
| abstract_inverted_index.net | 74 |
| abstract_inverted_index.not | 85 |
| abstract_inverted_index.set | 114, 183 |
| abstract_inverted_index.the | 13, 25, 42, 91, 100, 116, 130, 142, 161, 170, 180, 196, 231, 238, 241, 248 |
| abstract_inverted_index.way | 239 |
| abstract_inverted_index.(EC) | 39 |
| abstract_inverted_index.0.80 | 140 |
| abstract_inverted_index.1.09 | 165 |
| abstract_inverted_index.1.14 | 173 |
| abstract_inverted_index.18.9 | 221 |
| abstract_inverted_index.GPP, | 145, 164, 225 |
| abstract_inverted_index.NEE, | 146, 171, 228 |
| abstract_inverted_index.TER) | 178 |
| abstract_inverted_index.TER, | 148, 226 |
| abstract_inverted_index.also | 94 |
| abstract_inverted_index.been | 31 |
| abstract_inverted_index.case | 143, 162 |
| abstract_inverted_index.data | 40, 182, 209 |
| abstract_inverted_index.eddy | 37 |
| abstract_inverted_index.from | 36, 112 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.high | 133 |
| abstract_inverted_index.last | 26 |
| abstract_inverted_index.made | 32 |
| abstract_inverted_index.mean | 153, 214 |
| abstract_inverted_index.only | 86 |
| abstract_inverted_index.over | 179 |
| abstract_inverted_index.role | 11 |
| abstract_inverted_index.root | 152 |
| abstract_inverted_index.that | 50, 246 |
| abstract_inverted_index.this | 45 |
| abstract_inverted_index.time | 186 |
| abstract_inverted_index.(1.55 | 156 |
| abstract_inverted_index.(CFs) | 5 |
| abstract_inverted_index.(NEE) | 77 |
| abstract_inverted_index.0.69, | 138 |
| abstract_inverted_index.0.82, | 137 |
| abstract_inverted_index.Earth | 125 |
| abstract_inverted_index.among | 251 |
| abstract_inverted_index.cycle | 16 |
| abstract_inverted_index.gross | 65 |
| abstract_inverted_index.model | 131 |
| abstract_inverted_index.paves | 237 |
| abstract_inverted_index.scale | 34 |
| abstract_inverted_index.sets. | 210 |
| abstract_inverted_index.their | 10, 105 |
| abstract_inverted_index.three | 101 |
| abstract_inverted_index.using | 206 |
| abstract_inverted_index.work, | 46 |
| abstract_inverted_index.(GPP), | 68 |
| abstract_inverted_index.(TER), | 72 |
| abstract_inverted_index.114.8, | 219 |
| abstract_inverted_index.133.7, | 218 |
| abstract_inverted_index.Google | 124 |
| abstract_inverted_index.annual | 215 |
| abstract_inverted_index.carbon | 3, 15 |
| abstract_inverted_index.direct | 19 |
| abstract_inverted_index.during | 230 |
| abstract_inverted_index.errors | 155 |
| abstract_inverted_index.fluxes | 4, 102 |
| abstract_inverted_index.global | 14, 80 |
| abstract_inverted_index.globe. | 43 |
| abstract_inverted_index.having | 17 |
| abstract_inverted_index.impact | 20 |
| abstract_inverted_index.scale. | 81, 187 |
| abstract_inverted_index.square | 154 |
| abstract_inverted_index.years, | 27 |
| abstract_inverted_index.(MODIS) | 120 |
| abstract_inverted_index.MOD17A2 | 197 |
| abstract_inverted_index.amounts | 216 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.derives | 99 |
| abstract_inverted_index.efforts | 29 |
| abstract_inverted_index.engine. | 126 |
| abstract_inverted_index.forcing | 208 |
| abstract_inverted_index.imaging | 118 |
| abstract_inverted_index.jointly | 63, 103 |
| abstract_inverted_index.period. | 233 |
| abstract_inverted_index.primary | 66 |
| abstract_inverted_index.product | 203 |
| abstract_inverted_index.results | 212 |
| abstract_inverted_index.without | 205 |
| abstract_inverted_index.(PML_V2) | 204 |
| abstract_inverted_index.Gaussian | 54 |
| abstract_inverted_index.approach | 49, 236 |
| abstract_inverted_index.climate. | 23 |
| abstract_inverted_index.estimate | 64, 89 |
| abstract_inverted_index.exchange | 76 |
| abstract_inverted_index.exploits | 51 |
| abstract_inverted_index.physical | 106, 249 |
| abstract_inverted_index.preserve | 247 |
| abstract_inverted_index.product, | 198 |
| abstract_inverted_index.products | 121 |
| abstract_inverted_index.proposed | 61, 235 |
| abstract_inverted_index.provided | 191 |
| abstract_inverted_index.provides | 87 |
| abstract_inverted_index.reaching | 136 |
| abstract_inverted_index.reported | 213 |
| abstract_inverted_index.revealed | 132 |
| abstract_inverted_index.selected | 111 |
| abstract_inverted_index.Moreover, | 97 |
| abstract_inverted_index.algorithm | 57 |
| abstract_inverted_index.available | 122 |
| abstract_inverted_index.ecosystem | 70, 75 |
| abstract_inverted_index.eight-day | 185 |
| abstract_inverted_index.estimates | 190 |
| abstract_inverted_index.processes | 55 |
| abstract_inverted_index.upscaling | 254 |
| abstract_inverted_index.accuracies | 134 |
| abstract_inverted_index.covariance | 38 |
| abstract_inverted_index.predictors | 109 |
| abstract_inverted_index.preserving | 104 |
| abstract_inverted_index.processes. | 255 |
| abstract_inverted_index.production | 67 |
| abstract_inverted_index.regression | 56 |
| abstract_inverted_index.strategies | 245 |
| abstract_inverted_index.FLUXNET2015 | 181 |
| abstract_inverted_index.data-driven | 48 |
| abstract_inverted_index.development | 242 |
| abstract_inverted_index.multioutput | 53, 244 |
| abstract_inverted_index.performance | 128 |
| abstract_inverted_index.respiration | 71 |
| abstract_inverted_index.terrestrial | 69 |
| abstract_inverted_index.considerable | 28 |
| abstract_inverted_index.outperformed | 195 |
| abstract_inverted_index.uncertainty. | 96 |
| abstract_inverted_index.relationship. | 107 |
| abstract_inverted_index.relationships | 250 |
| abstract_inverted_index.respectively, | 229 |
| abstract_inverted_index.Earth's | 22 |
| abstract_inverted_index.meteorological | 207 |
| abstract_inverted_index.quantification | 1 |
| abstract_inverted_index.respectively), | 149 |
| abstract_inverted_index.2002–2023 | 232 |
| abstract_inverted_index.state-of-the-art | 201 |
| abstract_inverted_index.spectroradiometer | 119 |
| abstract_inverted_index.moderate-resolution | 117 |
| abstract_inverted_index.d<sup>−1</sup> | 159, 168, 176 |
| abstract_inverted_index.m<sup>−2</sup> | 158, 167, 175 |
| abstract_inverted_index.yr<sup>−1</sup> | 223 |
| abstract_inverted_index.<inline-formula><tex-math | 83, 193 |
| abstract_inverted_index.(<inline-formula><tex-math | 58 |
| abstract_inverted_index.(<italic>R</italic><sup>2</sup> | 135 |
| abstract_inverted_index.notation="LaTeX">$\mathcal{G}$</tex-math></inline-formula>-model | 84, 194 |
| abstract_inverted_index.notation="LaTeX">$\mathcal{G}$</tex-math></inline-formula>-model) | 59 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.8485332 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |