Global convergence of SGD on two layer neural nets Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/imaiai/iaae035
In this note, we consider appropriately regularized $\ell _{2}-$empirical risk of depth $2$ nets with any number of gates and show bounds on how the empirical loss evolves for Stochastic Gradient Descent (SGD) iterates on it—for arbitrary data and if the activation is adequately smooth and bounded like sigmoid and tanh. This, in turn, leads to a proof of global convergence of SGD for a special class of initializations. We also prove an exponentially fast convergence rate for continuous time SGD that also applies to smooth unbounded activations like SoftPlus. Our key idea is to show the existence of Frobenius norm regularized loss functions on constant-sized neural nets that are ‘Villani functions’ and thus be able to build on recent progress with analyzing SGD on such objectives. Most critically, the amount of regularization required for our analysis is independent of the size of the net.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/imaiai/iaae035
- https://academic.oup.com/imaiai/article-pdf/14/1/iaae035/61510614/iaae035.pdf
- OA Status
- hybrid
- Cited By
- 1
- References
- 90
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406626549
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406626549Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/imaiai/iaae035Digital Object Identifier
- Title
-
Global convergence of SGD on two layer neural netsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-15Full publication date if available
- Authors
-
Pulkit Gopalani, Anirbit MukherjeeList of authors in order
- Landing page
-
https://doi.org/10.1093/imaiai/iaae035Publisher landing page
- PDF URL
-
https://academic.oup.com/imaiai/article-pdf/14/1/iaae035/61510614/iaae035.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/imaiai/article-pdf/14/1/iaae035/61510614/iaae035.pdfDirect OA link when available
- Concepts
-
Convergence (economics), Layer (electronics), Political science, Computer science, Economics, Nanotechnology, Materials science, MacroeconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
90Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406626549 |
|---|---|
| doi | https://doi.org/10.1093/imaiai/iaae035 |
| ids.doi | https://doi.org/10.1093/imaiai/iaae035 |
| ids.openalex | https://openalex.org/W4406626549 |
| fwci | 4.81974515 |
| type | article |
| title | Global convergence of SGD on two layer neural nets |
| biblio.issue | 1 |
| biblio.volume | 14 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.982200026512146 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T11447 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9782999753952026 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Blind Source Separation Techniques |
| is_xpac | False |
| apc_list.value | 2582 |
| apc_list.currency | GBP |
| apc_list.value_usd | 3167 |
| apc_paid.value | 2582 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 3167 |
| concepts[0].id | https://openalex.org/C2777303404 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6331664323806763 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[0].display_name | Convergence (economics) |
| concepts[1].id | https://openalex.org/C2779227376 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5321506857872009 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6505497 |
| concepts[1].display_name | Layer (electronics) |
| concepts[2].id | https://openalex.org/C17744445 |
| concepts[2].level | 0 |
| concepts[2].score | 0.38693809509277344 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[2].display_name | Political science |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3541121482849121 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C162324750 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3204195499420166 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[4].display_name | Economics |
| concepts[5].id | https://openalex.org/C171250308 |
| concepts[5].level | 1 |
| concepts[5].score | 0.15051335096359253 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11468 |
| concepts[5].display_name | Nanotechnology |
| concepts[6].id | https://openalex.org/C192562407 |
| concepts[6].level | 0 |
| concepts[6].score | 0.12499180436134338 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[6].display_name | Materials science |
| concepts[7].id | https://openalex.org/C139719470 |
| concepts[7].level | 1 |
| concepts[7].score | 0.10377448797225952 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q39680 |
| concepts[7].display_name | Macroeconomics |
| keywords[0].id | https://openalex.org/keywords/convergence |
| keywords[0].score | 0.6331664323806763 |
| keywords[0].display_name | Convergence (economics) |
| keywords[1].id | https://openalex.org/keywords/layer |
| keywords[1].score | 0.5321506857872009 |
| keywords[1].display_name | Layer (electronics) |
| keywords[2].id | https://openalex.org/keywords/political-science |
| keywords[2].score | 0.38693809509277344 |
| keywords[2].display_name | Political science |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3541121482849121 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/economics |
| keywords[4].score | 0.3204195499420166 |
| keywords[4].display_name | Economics |
| keywords[5].id | https://openalex.org/keywords/nanotechnology |
| keywords[5].score | 0.15051335096359253 |
| keywords[5].display_name | Nanotechnology |
| keywords[6].id | https://openalex.org/keywords/materials-science |
| keywords[6].score | 0.12499180436134338 |
| keywords[6].display_name | Materials science |
| keywords[7].id | https://openalex.org/keywords/macroeconomics |
| keywords[7].score | 0.10377448797225952 |
| keywords[7].display_name | Macroeconomics |
| language | en |
| locations[0].id | doi:10.1093/imaiai/iaae035 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2734669121 |
| locations[0].source.issn | 2049-8764, 2049-8772 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2049-8764 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Information and Inference A Journal of the IMA |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/imaiai/article-pdf/14/1/iaae035/61510614/iaae035.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Information and Inference: A Journal of the IMA |
| locations[0].landing_page_url | https://doi.org/10.1093/imaiai/iaae035 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061501068 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9662-224X |
| authorships[0].author.display_name | Pulkit Gopalani |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[0].affiliations[0].raw_affiliation_string | Computer Science & Engineering, University of Michigan, Ann Arbor, MI 48109, US |
| authorships[0].institutions[0].id | https://openalex.org/I27837315 |
| authorships[0].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Michigan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pulkit Gopalani |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer Science & Engineering, University of Michigan, Ann Arbor, MI 48109, US |
| authorships[1].author.id | https://openalex.org/A5084835559 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5189-8939 |
| authorships[1].author.display_name | Anirbit Mukherjee |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I28407311 |
| authorships[1].affiliations[0].raw_affiliation_string | Computer Science, The University of Manchester, Oxford Street, Manchester M13 9PL, UK |
| authorships[1].institutions[0].id | https://openalex.org/I28407311 |
| authorships[1].institutions[0].ror | https://ror.org/027m9bs27 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I28407311 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Manchester |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Anirbit Mukherjee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computer Science, The University of Manchester, Oxford Street, Manchester M13 9PL, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/imaiai/article-pdf/14/1/iaae035/61510614/iaae035.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Global convergence of SGD on two layer neural nets |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/imaiai/iaae035 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2734669121 |
| best_oa_location.source.issn | 2049-8764, 2049-8772 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2049-8764 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Information and Inference A Journal of the IMA |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/imaiai/article-pdf/14/1/iaae035/61510614/iaae035.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Information and Inference: A Journal of the IMA |
| best_oa_location.landing_page_url | https://doi.org/10.1093/imaiai/iaae035 |
| primary_location.id | doi:10.1093/imaiai/iaae035 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2734669121 |
| primary_location.source.issn | 2049-8764, 2049-8772 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2049-8764 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Information and Inference A Journal of the IMA |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/imaiai/article-pdf/14/1/iaae035/61510614/iaae035.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Information and Inference: A Journal of the IMA |
| primary_location.landing_page_url | https://doi.org/10.1093/imaiai/iaae035 |
| publication_date | 2025-01-15 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6762371161, https://openalex.org/W6756455746, https://openalex.org/W6756091659, https://openalex.org/W6755938841, https://openalex.org/W6632522642, https://openalex.org/W6758902322, https://openalex.org/W6761496057, https://openalex.org/W6768106036, https://openalex.org/W6799008241, https://openalex.org/W6767940448, https://openalex.org/W6845809546, https://openalex.org/W6810260603, https://openalex.org/W6783980072, https://openalex.org/W6803246278, https://openalex.org/W6770495777, https://openalex.org/W6845460588, https://openalex.org/W6810449950, https://openalex.org/W6752009368, https://openalex.org/W6764442487, https://openalex.org/W6803055996, https://openalex.org/W6748748765, https://openalex.org/W6756001544, https://openalex.org/W6755150206, https://openalex.org/W6779954273, https://openalex.org/W6755293326, https://openalex.org/W6779330257, https://openalex.org/W6767489080, https://openalex.org/W6769329967, https://openalex.org/W2194775991, https://openalex.org/W6767662509, https://openalex.org/W6805025581, https://openalex.org/W6752495264, https://openalex.org/W6638665692, https://openalex.org/W6768178264, https://openalex.org/W6840456522, https://openalex.org/W2993367001, https://openalex.org/W6745256532, https://openalex.org/W6948022635, https://openalex.org/W6770287781, https://openalex.org/W6790195293, https://openalex.org/W6784275183, https://openalex.org/W2963095610, https://openalex.org/W6758728975, https://openalex.org/W6774542976, https://openalex.org/W6773173304, https://openalex.org/W6734079340, https://openalex.org/W6810016941, https://openalex.org/W6776511717, https://openalex.org/W2963791871, https://openalex.org/W3010825589, https://openalex.org/W3155817928, https://openalex.org/W6803587591, https://openalex.org/W6762747781, https://openalex.org/W6773394874, https://openalex.org/W4253905503, https://openalex.org/W6762989574, https://openalex.org/W6759955879, https://openalex.org/W2962937842, https://openalex.org/W6799044926, https://openalex.org/W6739166439, https://openalex.org/W6790675191, https://openalex.org/W6839267033, https://openalex.org/W6763681727, https://openalex.org/W6769300323, https://openalex.org/W4281560784, https://openalex.org/W2987473824, https://openalex.org/W4297813530, https://openalex.org/W2970176397, https://openalex.org/W2971043187, https://openalex.org/W4253907471, https://openalex.org/W2898324627, https://openalex.org/W2950987997, https://openalex.org/W2990138404, https://openalex.org/W4287870993, https://openalex.org/W2783557135, https://openalex.org/W1839868949, https://openalex.org/W2912322140, https://openalex.org/W3003298109, https://openalex.org/W4301089945, https://openalex.org/W2945404573, https://openalex.org/W4289293816, https://openalex.org/W3208382036, https://openalex.org/W2917744435, https://openalex.org/W2747329762, https://openalex.org/W1542886316, https://openalex.org/W3184951039, https://openalex.org/W4200630055, https://openalex.org/W4297904236, https://openalex.org/W2944909810, https://openalex.org/W4224325103 |
| referenced_works_count | 90 |
| abstract_inverted_index.a | 57, 65 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.We | 70 |
| abstract_inverted_index.an | 73 |
| abstract_inverted_index.be | 115 |
| abstract_inverted_index.if | 40 |
| abstract_inverted_index.in | 53 |
| abstract_inverted_index.is | 43, 94, 138 |
| abstract_inverted_index.of | 11, 18, 59, 62, 68, 99, 132, 140, 143 |
| abstract_inverted_index.on | 23, 35, 105, 119, 125 |
| abstract_inverted_index.to | 56, 85, 95, 117 |
| abstract_inverted_index.we | 4 |
| abstract_inverted_index.$2$ | 13 |
| abstract_inverted_index.Our | 91 |
| abstract_inverted_index.SGD | 63, 81, 124 |
| abstract_inverted_index.and | 20, 39, 46, 50, 113 |
| abstract_inverted_index.any | 16 |
| abstract_inverted_index.are | 110 |
| abstract_inverted_index.for | 29, 64, 78, 135 |
| abstract_inverted_index.how | 24 |
| abstract_inverted_index.key | 92 |
| abstract_inverted_index.our | 136 |
| abstract_inverted_index.the | 25, 41, 97, 130, 141, 144 |
| abstract_inverted_index.Most | 128 |
| abstract_inverted_index.able | 116 |
| abstract_inverted_index.also | 71, 83 |
| abstract_inverted_index.data | 38 |
| abstract_inverted_index.fast | 75 |
| abstract_inverted_index.idea | 93 |
| abstract_inverted_index.like | 48, 89 |
| abstract_inverted_index.loss | 27, 103 |
| abstract_inverted_index.net. | 145 |
| abstract_inverted_index.nets | 14, 108 |
| abstract_inverted_index.norm | 101 |
| abstract_inverted_index.rate | 77 |
| abstract_inverted_index.risk | 10 |
| abstract_inverted_index.show | 21, 96 |
| abstract_inverted_index.size | 142 |
| abstract_inverted_index.such | 126 |
| abstract_inverted_index.that | 82, 109 |
| abstract_inverted_index.this | 2 |
| abstract_inverted_index.thus | 114 |
| abstract_inverted_index.time | 80 |
| abstract_inverted_index.with | 15, 122 |
| abstract_inverted_index.$\ell | 8 |
| abstract_inverted_index.(SGD) | 33 |
| abstract_inverted_index.This, | 52 |
| abstract_inverted_index.build | 118 |
| abstract_inverted_index.class | 67 |
| abstract_inverted_index.depth | 12 |
| abstract_inverted_index.gates | 19 |
| abstract_inverted_index.leads | 55 |
| abstract_inverted_index.note, | 3 |
| abstract_inverted_index.proof | 58 |
| abstract_inverted_index.prove | 72 |
| abstract_inverted_index.tanh. | 51 |
| abstract_inverted_index.turn, | 54 |
| abstract_inverted_index.amount | 131 |
| abstract_inverted_index.bounds | 22 |
| abstract_inverted_index.global | 60 |
| abstract_inverted_index.neural | 107 |
| abstract_inverted_index.number | 17 |
| abstract_inverted_index.recent | 120 |
| abstract_inverted_index.smooth | 45, 86 |
| abstract_inverted_index.Descent | 32 |
| abstract_inverted_index.applies | 84 |
| abstract_inverted_index.bounded | 47 |
| abstract_inverted_index.evolves | 28 |
| abstract_inverted_index.sigmoid | 49 |
| abstract_inverted_index.special | 66 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Gradient | 31 |
| abstract_inverted_index.analysis | 137 |
| abstract_inverted_index.consider | 5 |
| abstract_inverted_index.iterates | 34 |
| abstract_inverted_index.it—for | 36 |
| abstract_inverted_index.progress | 121 |
| abstract_inverted_index.required | 134 |
| abstract_inverted_index.Frobenius | 100 |
| abstract_inverted_index.SoftPlus. | 90 |
| abstract_inverted_index.analyzing | 123 |
| abstract_inverted_index.arbitrary | 37 |
| abstract_inverted_index.empirical | 26 |
| abstract_inverted_index.existence | 98 |
| abstract_inverted_index.functions | 104 |
| abstract_inverted_index.unbounded | 87 |
| abstract_inverted_index.Stochastic | 30 |
| abstract_inverted_index.activation | 42 |
| abstract_inverted_index.adequately | 44 |
| abstract_inverted_index.continuous | 79 |
| abstract_inverted_index.‘Villani | 111 |
| abstract_inverted_index.activations | 88 |
| abstract_inverted_index.convergence | 61, 76 |
| abstract_inverted_index.critically, | 129 |
| abstract_inverted_index.independent | 139 |
| abstract_inverted_index.objectives. | 127 |
| abstract_inverted_index.regularized | 7, 102 |
| abstract_inverted_index.functions’ | 112 |
| abstract_inverted_index.appropriately | 6 |
| abstract_inverted_index.exponentially | 74 |
| abstract_inverted_index.constant-sized | 106 |
| abstract_inverted_index.regularization | 133 |
| abstract_inverted_index._{2}-$empirical | 9 |
| abstract_inverted_index.initializations. | 69 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.92557293 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |