Global homotopy theory via spectral Mackey functors Article Swipe
We show that Hausmann's model of global stable homotopy theory in terms of symmetric spectra is equivalent to the $\infty$-category of spectral Mackey functors in the sense of Barwick on a certain global effective Burnside category. We moreover provide an analogous description of Schwede's ultra-commutative monoids as space-valued global Mackey functors.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.07272
- https://arxiv.org/pdf/2202.07272
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226027313
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226027313Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.07272Digital Object Identifier
- Title
-
Global homotopy theory via spectral Mackey functorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-15Full publication date if available
- Authors
-
Tobias LenzList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.07272Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.07272Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.07272Direct OA link when available
- Concepts
-
Functor, Mathematics, Pure mathematics, Equivalence (formal languages), K-theory (physics), Algebraic number, Homotopy, Algebra over a field, Mathematical analysis, CohomologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226027313 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.07272 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.07272 |
| ids.openalex | https://openalex.org/W4226027313 |
| fwci | |
| type | preprint |
| title | Global homotopy theory via spectral Mackey functors |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10896 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Homotopy and Cohomology in Algebraic Topology |
| topics[1].id | https://openalex.org/T10287 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9927999973297119 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2608 |
| topics[1].subfield.display_name | Geometry and Topology |
| topics[1].display_name | Algebraic structures and combinatorial models |
| topics[2].id | https://openalex.org/T11673 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.986299991607666 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2602 |
| topics[2].subfield.display_name | Algebra and Number Theory |
| topics[2].display_name | Advanced Topics in Algebra |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C156772000 |
| concepts[0].level | 2 |
| concepts[0].score | 0.814323902130127 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q864475 |
| concepts[0].display_name | Functor |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.77830970287323 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C202444582 |
| concepts[2].level | 1 |
| concepts[2].score | 0.582179069519043 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[2].display_name | Pure mathematics |
| concepts[3].id | https://openalex.org/C2780069185 |
| concepts[3].level | 2 |
| concepts[3].score | 0.522266685962677 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7977945 |
| concepts[3].display_name | Equivalence (formal languages) |
| concepts[4].id | https://openalex.org/C32715997 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5217983722686768 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17098372 |
| concepts[4].display_name | K-theory (physics) |
| concepts[5].id | https://openalex.org/C9376300 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46617698669433594 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q168817 |
| concepts[5].display_name | Algebraic number |
| concepts[6].id | https://openalex.org/C5961521 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46000319719314575 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q746083 |
| concepts[6].display_name | Homotopy |
| concepts[7].id | https://openalex.org/C136119220 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3723674416542053 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[7].display_name | Algebra over a field |
| concepts[8].id | https://openalex.org/C134306372 |
| concepts[8].level | 1 |
| concepts[8].score | 0.11415404081344604 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[8].display_name | Mathematical analysis |
| concepts[9].id | https://openalex.org/C78606066 |
| concepts[9].level | 2 |
| concepts[9].score | 0.09220480918884277 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1198376 |
| concepts[9].display_name | Cohomology |
| keywords[0].id | https://openalex.org/keywords/functor |
| keywords[0].score | 0.814323902130127 |
| keywords[0].display_name | Functor |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.77830970287323 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/pure-mathematics |
| keywords[2].score | 0.582179069519043 |
| keywords[2].display_name | Pure mathematics |
| keywords[3].id | https://openalex.org/keywords/equivalence |
| keywords[3].score | 0.522266685962677 |
| keywords[3].display_name | Equivalence (formal languages) |
| keywords[4].id | https://openalex.org/keywords/k-theory |
| keywords[4].score | 0.5217983722686768 |
| keywords[4].display_name | K-theory (physics) |
| keywords[5].id | https://openalex.org/keywords/algebraic-number |
| keywords[5].score | 0.46617698669433594 |
| keywords[5].display_name | Algebraic number |
| keywords[6].id | https://openalex.org/keywords/homotopy |
| keywords[6].score | 0.46000319719314575 |
| keywords[6].display_name | Homotopy |
| keywords[7].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[7].score | 0.3723674416542053 |
| keywords[7].display_name | Algebra over a field |
| keywords[8].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[8].score | 0.11415404081344604 |
| keywords[8].display_name | Mathematical analysis |
| keywords[9].id | https://openalex.org/keywords/cohomology |
| keywords[9].score | 0.09220480918884277 |
| keywords[9].display_name | Cohomology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.07272 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.07272 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.07272 |
| locations[1].id | doi:10.48550/arxiv.2202.07272 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.07272 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5019789404 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6031-5261 |
| authorships[0].author.display_name | Tobias Lenz |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lenz, Tobias |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.07272 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-05T00:00:00 |
| display_name | Global homotopy theory via spectral Mackey functors |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10896 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Homotopy and Cohomology in Algebraic Topology |
| related_works | https://openalex.org/W1615487630, https://openalex.org/W2997091376, https://openalex.org/W4297746057, https://openalex.org/W2952948135, https://openalex.org/W2000341831, https://openalex.org/W2133084579, https://openalex.org/W3021736704, https://openalex.org/W1992593135, https://openalex.org/W2963289085, https://openalex.org/W4248475914 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.07272 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.07272 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.07272 |
| primary_location.id | pmh:oai:arXiv.org:2202.07272 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.07272 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.07272 |
| publication_date | 2022-02-15 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30 |
| abstract_inverted_index.We | 0, 36 |
| abstract_inverted_index.an | 39 |
| abstract_inverted_index.as | 46 |
| abstract_inverted_index.in | 10, 24 |
| abstract_inverted_index.is | 15 |
| abstract_inverted_index.of | 5, 12, 20, 27, 42 |
| abstract_inverted_index.on | 29 |
| abstract_inverted_index.to | 17 |
| abstract_inverted_index.the | 18, 25 |
| abstract_inverted_index.show | 1 |
| abstract_inverted_index.that | 2 |
| abstract_inverted_index.model | 4 |
| abstract_inverted_index.sense | 26 |
| abstract_inverted_index.terms | 11 |
| abstract_inverted_index.Mackey | 22, 49 |
| abstract_inverted_index.global | 6, 32, 48 |
| abstract_inverted_index.stable | 7 |
| abstract_inverted_index.theory | 9 |
| abstract_inverted_index.Barwick | 28 |
| abstract_inverted_index.certain | 31 |
| abstract_inverted_index.monoids | 45 |
| abstract_inverted_index.provide | 38 |
| abstract_inverted_index.spectra | 14 |
| abstract_inverted_index.Burnside | 34 |
| abstract_inverted_index.functors | 23 |
| abstract_inverted_index.homotopy | 8 |
| abstract_inverted_index.moreover | 37 |
| abstract_inverted_index.spectral | 21 |
| abstract_inverted_index.Schwede's | 43 |
| abstract_inverted_index.analogous | 40 |
| abstract_inverted_index.category. | 35 |
| abstract_inverted_index.effective | 33 |
| abstract_inverted_index.functors. | 50 |
| abstract_inverted_index.symmetric | 13 |
| abstract_inverted_index.Hausmann's | 3 |
| abstract_inverted_index.equivalent | 16 |
| abstract_inverted_index.description | 41 |
| abstract_inverted_index.space-valued | 47 |
| abstract_inverted_index.$\infty$-category | 19 |
| abstract_inverted_index.ultra-commutative | 44 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5019789404 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |