Global Perspectives on Nitrate Aerosol Dynamics: A Comprehensive Sensitivity Analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5194/egusphere-2025-313
In recent years, nitrate aerosols have emerged as a dominant component of atmospheric composition, surpassing sulfate aerosols in both concentration and climatic impact. However, accurately simulating nitrate aerosols remains a significant challenge for global atmospheric models due to the complexity of their formation and regional variability. This study investigates key factors influencing nitrate aerosol formation to improve simulation accuracy in highly polluted regions. Using the advanced EMAC climate and chemistry model, we assess the effects of grid resolution, emission inventories, and thermodynamic, chemical, and aerosol scavenging processes. The ISORROPIA II thermodynamic model is employed to simulate the formation of inorganic aerosols. Model predictions are compared with surface observations of particulate nitrate in PM1 and PM2.5 size fractions, including PM2.5 data from filter-based observational networks and PM1 data from aerosol mass spectrometer field campaigns across Europe, North America, East Asia, and India. Results show that the model overestimates PM2.5 nitrate concentrations, especially in East Asia, with biases up to a factor of three. Increasing grid resolution, adjusting N2O5 hydrolysis uptake coefficient, and utilizing an appropriate emission database (e.g., CMIP6) improve performance. However, these adjustments do not necessarily enhance PM1 predictions, which remain underestimated, especially in urban downwind sites. Seasonal variations and diurnal trends reveal discrepancies in model performance, especially in Europe and urban downwind locations. In Europe, model bias is driven by an unrealistically sharp decrease in nitrate aerosol levels from morning maxima to evening minima. Sensitivity tests show relatively small impact on total tropospheric nitrate burden, with variations within 25 %.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5194/egusphere-2025-313
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407414636
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407414636Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/egusphere-2025-313Digital Object Identifier
- Title
-
Global Perspectives on Nitrate Aerosol Dynamics: A Comprehensive Sensitivity AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-12Full publication date if available
- Authors
-
Alexandros Milousis, Serena R. Scholz, Hendrik Fuchs, Alexandra P. Tsimpidi, Vlassis A. KarydisList of authors in order
- Landing page
-
https://doi.org/10.5194/egusphere-2025-313Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/egusphere-2025-313Direct OA link when available
- Concepts
-
Aerosol, Nitrate, Sensitivity (control systems), Environmental science, Environmental chemistry, Chemistry, Meteorology, Geography, Engineering, Electronic engineering, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407414636 |
|---|---|
| doi | https://doi.org/10.5194/egusphere-2025-313 |
| ids.doi | https://doi.org/10.5194/egusphere-2025-313 |
| ids.openalex | https://openalex.org/W4407414636 |
| fwci | 0.0 |
| type | preprint |
| title | Global Perspectives on Nitrate Aerosol Dynamics: A Comprehensive Sensitivity Analysis |
| awards[0].id | https://openalex.org/G5515769865 |
| awards[0].funder_id | https://openalex.org/F4320335254 |
| awards[0].display_name | |
| awards[0].funder_award_id | 821205 |
| awards[0].funder_display_name | Horizon 2020 |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10075 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.766700029373169 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Atmospheric chemistry and aerosols |
| funders[0].id | https://openalex.org/F4320335254 |
| funders[0].ror | |
| funders[0].display_name | Horizon 2020 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779345167 |
| concepts[0].level | 2 |
| concepts[0].score | 0.637686550617218 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q104541 |
| concepts[0].display_name | Aerosol |
| concepts[1].id | https://openalex.org/C2776384668 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6275632381439209 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q182168 |
| concepts[1].display_name | Nitrate |
| concepts[2].id | https://openalex.org/C21200559 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5984593033790588 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[2].display_name | Sensitivity (control systems) |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5168445706367493 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C107872376 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4235912263393402 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q321355 |
| concepts[4].display_name | Environmental chemistry |
| concepts[5].id | https://openalex.org/C185592680 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2575872540473938 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[5].display_name | Chemistry |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.1987854242324829 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.18594586849212646 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.12124550342559814 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C24326235 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[9].display_name | Electronic engineering |
| concepts[10].id | https://openalex.org/C178790620 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[10].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/aerosol |
| keywords[0].score | 0.637686550617218 |
| keywords[0].display_name | Aerosol |
| keywords[1].id | https://openalex.org/keywords/nitrate |
| keywords[1].score | 0.6275632381439209 |
| keywords[1].display_name | Nitrate |
| keywords[2].id | https://openalex.org/keywords/sensitivity |
| keywords[2].score | 0.5984593033790588 |
| keywords[2].display_name | Sensitivity (control systems) |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.5168445706367493 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/environmental-chemistry |
| keywords[4].score | 0.4235912263393402 |
| keywords[4].display_name | Environmental chemistry |
| keywords[5].id | https://openalex.org/keywords/chemistry |
| keywords[5].score | 0.2575872540473938 |
| keywords[5].display_name | Chemistry |
| keywords[6].id | https://openalex.org/keywords/meteorology |
| keywords[6].score | 0.1987854242324829 |
| keywords[6].display_name | Meteorology |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.18594586849212646 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.12124550342559814 |
| keywords[8].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.5194/egusphere-2025-313 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/egusphere-2025-313 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5092769485 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8975-9210 |
| authorships[0].author.display_name | Alexandros Milousis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alexandros Milousis |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037842588 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-1795-2183 |
| authorships[1].author.display_name | Serena R. Scholz |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Susanne M. C. Scholz |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5057217648 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1263-0061 |
| authorships[2].author.display_name | Hendrik Fuchs |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hendrik Fuchs |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5026290341 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8773-4987 |
| authorships[3].author.display_name | Alexandra P. Tsimpidi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alexandra P. Tsimpidi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5005353373 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1616-9746 |
| authorships[4].author.display_name | Vlassis A. Karydis |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Vlassis A. Karydis |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/egusphere-2025-313 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Global Perspectives on Nitrate Aerosol Dynamics: A Comprehensive Sensitivity Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T10075 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.766700029373169 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Atmospheric chemistry and aerosols |
| related_works | https://openalex.org/W3126136541, https://openalex.org/W2396583078, https://openalex.org/W2896789315, https://openalex.org/W4213416983, https://openalex.org/W2941835033, https://openalex.org/W3040270278, https://openalex.org/W2165583849, https://openalex.org/W2998338862, https://openalex.org/W3196990708, https://openalex.org/W2019281257 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/egusphere-2025-313 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/egusphere-2025-313 |
| primary_location.id | doi:10.5194/egusphere-2025-313 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/egusphere-2025-313 |
| publication_date | 2025-02-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 30, 159 |
| abstract_inverted_index.%. | 251 |
| abstract_inverted_index.25 | 250 |
| abstract_inverted_index.II | 90 |
| abstract_inverted_index.In | 1, 215 |
| abstract_inverted_index.an | 173, 222 |
| abstract_inverted_index.as | 8 |
| abstract_inverted_index.by | 221 |
| abstract_inverted_index.do | 184 |
| abstract_inverted_index.in | 18, 60, 112, 152, 194, 205, 209, 226 |
| abstract_inverted_index.is | 93, 219 |
| abstract_inverted_index.of | 12, 41, 76, 99, 109, 161 |
| abstract_inverted_index.on | 242 |
| abstract_inverted_index.to | 38, 56, 95, 158, 233 |
| abstract_inverted_index.up | 157 |
| abstract_inverted_index.we | 72 |
| abstract_inverted_index.PM1 | 113, 126, 188 |
| abstract_inverted_index.The | 88 |
| abstract_inverted_index.and | 21, 44, 69, 81, 84, 114, 125, 140, 171, 200, 211 |
| abstract_inverted_index.are | 104 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 33 |
| abstract_inverted_index.key | 50 |
| abstract_inverted_index.not | 185 |
| abstract_inverted_index.the | 39, 65, 74, 97, 145 |
| abstract_inverted_index.EMAC | 67 |
| abstract_inverted_index.East | 138, 153 |
| abstract_inverted_index.N2O5 | 167 |
| abstract_inverted_index.This | 47 |
| abstract_inverted_index.bias | 218 |
| abstract_inverted_index.both | 19 |
| abstract_inverted_index.data | 120, 127 |
| abstract_inverted_index.from | 121, 128, 230 |
| abstract_inverted_index.grid | 77, 164 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.mass | 130 |
| abstract_inverted_index.show | 143, 238 |
| abstract_inverted_index.size | 116 |
| abstract_inverted_index.that | 144 |
| abstract_inverted_index.with | 106, 155, 247 |
| abstract_inverted_index.Asia, | 139, 154 |
| abstract_inverted_index.Model | 102 |
| abstract_inverted_index.North | 136 |
| abstract_inverted_index.PM2.5 | 115, 119, 148 |
| abstract_inverted_index.Using | 64 |
| abstract_inverted_index.field | 132 |
| abstract_inverted_index.model | 92, 146, 206, 217 |
| abstract_inverted_index.sharp | 224 |
| abstract_inverted_index.small | 240 |
| abstract_inverted_index.study | 48 |
| abstract_inverted_index.tests | 237 |
| abstract_inverted_index.their | 42 |
| abstract_inverted_index.these | 182 |
| abstract_inverted_index.total | 243 |
| abstract_inverted_index.urban | 195, 212 |
| abstract_inverted_index.which | 190 |
| abstract_inverted_index.(e.g., | 177 |
| abstract_inverted_index.CMIP6) | 178 |
| abstract_inverted_index.Europe | 210 |
| abstract_inverted_index.India. | 141 |
| abstract_inverted_index.across | 134 |
| abstract_inverted_index.assess | 73 |
| abstract_inverted_index.biases | 156 |
| abstract_inverted_index.driven | 220 |
| abstract_inverted_index.factor | 160 |
| abstract_inverted_index.global | 34 |
| abstract_inverted_index.highly | 61 |
| abstract_inverted_index.impact | 241 |
| abstract_inverted_index.levels | 229 |
| abstract_inverted_index.maxima | 232 |
| abstract_inverted_index.model, | 71 |
| abstract_inverted_index.models | 36 |
| abstract_inverted_index.recent | 2 |
| abstract_inverted_index.remain | 191 |
| abstract_inverted_index.reveal | 203 |
| abstract_inverted_index.sites. | 197 |
| abstract_inverted_index.three. | 162 |
| abstract_inverted_index.trends | 202 |
| abstract_inverted_index.uptake | 169 |
| abstract_inverted_index.within | 249 |
| abstract_inverted_index.years, | 3 |
| abstract_inverted_index.Europe, | 135, 216 |
| abstract_inverted_index.Results | 142 |
| abstract_inverted_index.aerosol | 54, 85, 129, 228 |
| abstract_inverted_index.burden, | 246 |
| abstract_inverted_index.climate | 68 |
| abstract_inverted_index.diurnal | 201 |
| abstract_inverted_index.effects | 75 |
| abstract_inverted_index.emerged | 7 |
| abstract_inverted_index.enhance | 187 |
| abstract_inverted_index.evening | 234 |
| abstract_inverted_index.factors | 51 |
| abstract_inverted_index.impact. | 23 |
| abstract_inverted_index.improve | 57, 179 |
| abstract_inverted_index.minima. | 235 |
| abstract_inverted_index.morning | 231 |
| abstract_inverted_index.nitrate | 4, 27, 53, 111, 149, 227, 245 |
| abstract_inverted_index.remains | 29 |
| abstract_inverted_index.sulfate | 16 |
| abstract_inverted_index.surface | 107 |
| abstract_inverted_index.America, | 137 |
| abstract_inverted_index.However, | 24, 181 |
| abstract_inverted_index.Seasonal | 198 |
| abstract_inverted_index.accuracy | 59 |
| abstract_inverted_index.advanced | 66 |
| abstract_inverted_index.aerosols | 5, 17, 28 |
| abstract_inverted_index.climatic | 22 |
| abstract_inverted_index.compared | 105 |
| abstract_inverted_index.database | 176 |
| abstract_inverted_index.decrease | 225 |
| abstract_inverted_index.dominant | 10 |
| abstract_inverted_index.downwind | 196, 213 |
| abstract_inverted_index.emission | 79, 175 |
| abstract_inverted_index.employed | 94 |
| abstract_inverted_index.networks | 124 |
| abstract_inverted_index.polluted | 62 |
| abstract_inverted_index.regional | 45 |
| abstract_inverted_index.regions. | 63 |
| abstract_inverted_index.simulate | 96 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.ISORROPIA | 89 |
| abstract_inverted_index.adjusting | 166 |
| abstract_inverted_index.aerosols. | 101 |
| abstract_inverted_index.campaigns | 133 |
| abstract_inverted_index.challenge | 32 |
| abstract_inverted_index.chemical, | 83 |
| abstract_inverted_index.chemistry | 70 |
| abstract_inverted_index.component | 11 |
| abstract_inverted_index.formation | 43, 55, 98 |
| abstract_inverted_index.including | 118 |
| abstract_inverted_index.inorganic | 100 |
| abstract_inverted_index.utilizing | 172 |
| abstract_inverted_index.Increasing | 163 |
| abstract_inverted_index.accurately | 25 |
| abstract_inverted_index.complexity | 40 |
| abstract_inverted_index.especially | 151, 193, 208 |
| abstract_inverted_index.fractions, | 117 |
| abstract_inverted_index.hydrolysis | 168 |
| abstract_inverted_index.locations. | 214 |
| abstract_inverted_index.processes. | 87 |
| abstract_inverted_index.relatively | 239 |
| abstract_inverted_index.scavenging | 86 |
| abstract_inverted_index.simulating | 26 |
| abstract_inverted_index.simulation | 58 |
| abstract_inverted_index.surpassing | 15 |
| abstract_inverted_index.variations | 199, 248 |
| abstract_inverted_index.Sensitivity | 236 |
| abstract_inverted_index.adjustments | 183 |
| abstract_inverted_index.appropriate | 174 |
| abstract_inverted_index.atmospheric | 13, 35 |
| abstract_inverted_index.influencing | 52 |
| abstract_inverted_index.necessarily | 186 |
| abstract_inverted_index.particulate | 110 |
| abstract_inverted_index.predictions | 103 |
| abstract_inverted_index.resolution, | 78, 165 |
| abstract_inverted_index.significant | 31 |
| abstract_inverted_index.coefficient, | 170 |
| abstract_inverted_index.composition, | 14 |
| abstract_inverted_index.filter-based | 122 |
| abstract_inverted_index.inventories, | 80 |
| abstract_inverted_index.investigates | 49 |
| abstract_inverted_index.observations | 108 |
| abstract_inverted_index.performance, | 207 |
| abstract_inverted_index.performance. | 180 |
| abstract_inverted_index.predictions, | 189 |
| abstract_inverted_index.spectrometer | 131 |
| abstract_inverted_index.tropospheric | 244 |
| abstract_inverted_index.variability. | 46 |
| abstract_inverted_index.concentration | 20 |
| abstract_inverted_index.discrepancies | 204 |
| abstract_inverted_index.observational | 123 |
| abstract_inverted_index.overestimates | 147 |
| abstract_inverted_index.thermodynamic | 91 |
| abstract_inverted_index.thermodynamic, | 82 |
| abstract_inverted_index.concentrations, | 150 |
| abstract_inverted_index.underestimated, | 192 |
| abstract_inverted_index.unrealistically | 223 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.0361334 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |