Global terrestrial ecosystem resilience: a high-resolution multivariate analysis of patterns and drivers Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5194/egusphere-egu24-12856
Natural terrestrial ecosystems in different parts of the world have been losing resilience in the past decades. Such losses of resilience can be the precursors for regime shifts on local or regional scales that can have large impacts on ecosystem structure and function as well as nature’s contributions to people. Drivers of resilience loss include mainly changes in the mean and variability of temperature and precipitation, and anthropogenic land modifications of adjacent or remote ecosystems.Global assessments of ecosystem resilience often exclude areas with direct anthropogenic land use changes and focus instead on remnant natural ecosystems. However, for regional stakeholders it is important to understand how land-use and zoning decisions may affect the resilience of remaining ecosystems and the risk of critical transitions.In this study, we conduct a high-resolution global assessment of terrestrial ecosystem resilience losses, using time series of multiple remotely-sensed ecosystem indicators, and employing a range of early warning signals. We also evaluate the importance of different climatic and anthropogenic drivers at a local scale of administrative units in causing the detected changes in resilience. This allows us to get a comprehensive and robust understanding of different dimensions of change in global ecosystem resilience and their locally relevant drivers of change.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.5194/egusphere-egu24-12856
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392760178
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392760178Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/egusphere-egu24-12856Digital Object Identifier
- Title
-
Global terrestrial ecosystem resilience: a high-resolution multivariate analysis of patterns and driversWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-08Full publication date if available
- Authors
-
Nielja Knecht, Ingo Fetzer, Juan RochaList of authors in order
- Landing page
-
https://doi.org/10.5194/egusphere-egu24-12856Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5194/egusphere-egu24-12856Direct OA link when available
- Concepts
-
Resilience (materials science), Ecosystem, Multivariate statistics, Environmental science, Terrestrial ecosystem, Environmental resource management, High resolution, Multivariate analysis, Geography, Ecology, Remote sensing, Computer science, Biology, Machine learning, Physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392760178 |
|---|---|
| doi | https://doi.org/10.5194/egusphere-egu24-12856 |
| ids.doi | https://doi.org/10.5194/egusphere-egu24-12856 |
| ids.openalex | https://openalex.org/W4392760178 |
| fwci | 0.0 |
| type | preprint |
| title | Global terrestrial ecosystem resilience: a high-resolution multivariate analysis of patterns and drivers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13377 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.8076000213623047 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Ecosystem dynamics and resilience |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779585090 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7652486562728882 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3457762 |
| concepts[0].display_name | Resilience (materials science) |
| concepts[1].id | https://openalex.org/C110872660 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6892976760864258 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q37813 |
| concepts[1].display_name | Ecosystem |
| concepts[2].id | https://openalex.org/C161584116 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5597403645515442 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[2].display_name | Multivariate statistics |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5125532150268555 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C65680412 |
| concepts[4].level | 3 |
| concepts[4].score | 0.471952348947525 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3718755 |
| concepts[4].display_name | Terrestrial ecosystem |
| concepts[5].id | https://openalex.org/C107826830 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46858447790145874 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q929380 |
| concepts[5].display_name | Environmental resource management |
| concepts[6].id | https://openalex.org/C3020199158 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42806902527809143 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q210521 |
| concepts[6].display_name | High resolution |
| concepts[7].id | https://openalex.org/C38180746 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4275127351284027 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[7].display_name | Multivariate analysis |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.356590211391449 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C18903297 |
| concepts[9].level | 1 |
| concepts[9].score | 0.26315388083457947 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[9].display_name | Ecology |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.233254075050354 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.19233438372612 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10393178462982178 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C97355855 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[15].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/resilience |
| keywords[0].score | 0.7652486562728882 |
| keywords[0].display_name | Resilience (materials science) |
| keywords[1].id | https://openalex.org/keywords/ecosystem |
| keywords[1].score | 0.6892976760864258 |
| keywords[1].display_name | Ecosystem |
| keywords[2].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[2].score | 0.5597403645515442 |
| keywords[2].display_name | Multivariate statistics |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.5125532150268555 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/terrestrial-ecosystem |
| keywords[4].score | 0.471952348947525 |
| keywords[4].display_name | Terrestrial ecosystem |
| keywords[5].id | https://openalex.org/keywords/environmental-resource-management |
| keywords[5].score | 0.46858447790145874 |
| keywords[5].display_name | Environmental resource management |
| keywords[6].id | https://openalex.org/keywords/high-resolution |
| keywords[6].score | 0.42806902527809143 |
| keywords[6].display_name | High resolution |
| keywords[7].id | https://openalex.org/keywords/multivariate-analysis |
| keywords[7].score | 0.4275127351284027 |
| keywords[7].display_name | Multivariate analysis |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.356590211391449 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/ecology |
| keywords[9].score | 0.26315388083457947 |
| keywords[9].display_name | Ecology |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.233254075050354 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.19233438372612 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.10393178462982178 |
| keywords[12].display_name | Biology |
| language | en |
| locations[0].id | doi:10.5194/egusphere-egu24-12856 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5194/egusphere-egu24-12856 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5057280531 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4105-3251 |
| authorships[0].author.display_name | Nielja Knecht |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nielja Knecht |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5037225903 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7335-5679 |
| authorships[1].author.display_name | Ingo Fetzer |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ingo Fetzer |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5068688640 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2322-5459 |
| authorships[2].author.display_name | Juan Rocha |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Juan Rocha |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5194/egusphere-egu24-12856 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Global terrestrial ecosystem resilience: a high-resolution multivariate analysis of patterns and drivers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13377 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.8076000213623047 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Ecosystem dynamics and resilience |
| related_works | https://openalex.org/W2406638334, https://openalex.org/W40745829, https://openalex.org/W4318262572, https://openalex.org/W1978357124, https://openalex.org/W1578824628, https://openalex.org/W2032728545, https://openalex.org/W1570805059, https://openalex.org/W4250754046, https://openalex.org/W4243682621, https://openalex.org/W2036849593 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/egusphere-egu24-12856 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5194/egusphere-egu24-12856 |
| primary_location.id | doi:10.5194/egusphere-egu24-12856 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5194/egusphere-egu24-12856 |
| publication_date | 2024-03-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 126, 145, 163, 181 |
| abstract_inverted_index.We | 151 |
| abstract_inverted_index.as | 43, 45 |
| abstract_inverted_index.at | 162 |
| abstract_inverted_index.be | 22 |
| abstract_inverted_index.in | 3, 13, 57, 169, 174, 191 |
| abstract_inverted_index.is | 100 |
| abstract_inverted_index.it | 99 |
| abstract_inverted_index.of | 6, 19, 51, 62, 70, 76, 113, 119, 130, 138, 147, 156, 166, 186, 189, 200 |
| abstract_inverted_index.on | 28, 38, 91 |
| abstract_inverted_index.or | 30, 72 |
| abstract_inverted_index.to | 48, 102, 179 |
| abstract_inverted_index.us | 178 |
| abstract_inverted_index.we | 124 |
| abstract_inverted_index.and | 41, 60, 64, 66, 88, 106, 116, 143, 159, 183, 195 |
| abstract_inverted_index.can | 21, 34 |
| abstract_inverted_index.for | 25, 96 |
| abstract_inverted_index.get | 180 |
| abstract_inverted_index.how | 104 |
| abstract_inverted_index.may | 109 |
| abstract_inverted_index.the | 7, 14, 23, 58, 111, 117, 154, 171 |
| abstract_inverted_index.use | 86 |
| abstract_inverted_index.Such | 17 |
| abstract_inverted_index.This | 176 |
| abstract_inverted_index.also | 152 |
| abstract_inverted_index.been | 10 |
| abstract_inverted_index.have | 9, 35 |
| abstract_inverted_index.land | 68, 85 |
| abstract_inverted_index.loss | 53 |
| abstract_inverted_index.mean | 59 |
| abstract_inverted_index.past | 15 |
| abstract_inverted_index.risk | 118 |
| abstract_inverted_index.that | 33 |
| abstract_inverted_index.this | 122 |
| abstract_inverted_index.time | 136 |
| abstract_inverted_index.well | 44 |
| abstract_inverted_index.with | 82 |
| abstract_inverted_index.areas | 81 |
| abstract_inverted_index.early | 148 |
| abstract_inverted_index.focus | 89 |
| abstract_inverted_index.large | 36 |
| abstract_inverted_index.local | 29, 164 |
| abstract_inverted_index.often | 79 |
| abstract_inverted_index.parts | 5 |
| abstract_inverted_index.range | 146 |
| abstract_inverted_index.scale | 165 |
| abstract_inverted_index.their | 196 |
| abstract_inverted_index.units | 168 |
| abstract_inverted_index.using | 135 |
| abstract_inverted_index.world | 8 |
| abstract_inverted_index.affect | 110 |
| abstract_inverted_index.allows | 177 |
| abstract_inverted_index.change | 190 |
| abstract_inverted_index.direct | 83 |
| abstract_inverted_index.global | 128, 192 |
| abstract_inverted_index.losing | 11 |
| abstract_inverted_index.losses | 18 |
| abstract_inverted_index.mainly | 55 |
| abstract_inverted_index.regime | 26 |
| abstract_inverted_index.remote | 73 |
| abstract_inverted_index.robust | 184 |
| abstract_inverted_index.scales | 32 |
| abstract_inverted_index.series | 137 |
| abstract_inverted_index.shifts | 27 |
| abstract_inverted_index.study, | 123 |
| abstract_inverted_index.zoning | 107 |
| abstract_inverted_index.Drivers | 50 |
| abstract_inverted_index.Natural | 0 |
| abstract_inverted_index.causing | 170 |
| abstract_inverted_index.change. | 201 |
| abstract_inverted_index.changes | 56, 87, 173 |
| abstract_inverted_index.conduct | 125 |
| abstract_inverted_index.drivers | 161, 199 |
| abstract_inverted_index.exclude | 80 |
| abstract_inverted_index.impacts | 37 |
| abstract_inverted_index.include | 54 |
| abstract_inverted_index.instead | 90 |
| abstract_inverted_index.locally | 197 |
| abstract_inverted_index.losses, | 134 |
| abstract_inverted_index.natural | 93 |
| abstract_inverted_index.people. | 49 |
| abstract_inverted_index.remnant | 92 |
| abstract_inverted_index.warning | 149 |
| abstract_inverted_index.However, | 95 |
| abstract_inverted_index.adjacent | 71 |
| abstract_inverted_index.climatic | 158 |
| abstract_inverted_index.critical | 120 |
| abstract_inverted_index.decades. | 16 |
| abstract_inverted_index.detected | 172 |
| abstract_inverted_index.evaluate | 153 |
| abstract_inverted_index.function | 42 |
| abstract_inverted_index.land-use | 105 |
| abstract_inverted_index.multiple | 139 |
| abstract_inverted_index.regional | 31, 97 |
| abstract_inverted_index.relevant | 198 |
| abstract_inverted_index.signals. | 150 |
| abstract_inverted_index.decisions | 108 |
| abstract_inverted_index.different | 4, 157, 187 |
| abstract_inverted_index.ecosystem | 39, 77, 132, 141, 193 |
| abstract_inverted_index.employing | 144 |
| abstract_inverted_index.important | 101 |
| abstract_inverted_index.remaining | 114 |
| abstract_inverted_index.structure | 40 |
| abstract_inverted_index.assessment | 129 |
| abstract_inverted_index.dimensions | 188 |
| abstract_inverted_index.ecosystems | 2, 115 |
| abstract_inverted_index.importance | 155 |
| abstract_inverted_index.precursors | 24 |
| abstract_inverted_index.resilience | 12, 20, 52, 78, 112, 133, 194 |
| abstract_inverted_index.understand | 103 |
| abstract_inverted_index.assessments | 75 |
| abstract_inverted_index.ecosystems. | 94 |
| abstract_inverted_index.indicators, | 142 |
| abstract_inverted_index.resilience. | 175 |
| abstract_inverted_index.temperature | 63 |
| abstract_inverted_index.terrestrial | 1, 131 |
| abstract_inverted_index.variability | 61 |
| abstract_inverted_index.stakeholders | 98 |
| abstract_inverted_index.anthropogenic | 67, 84, 160 |
| abstract_inverted_index.comprehensive | 182 |
| abstract_inverted_index.contributions | 47 |
| abstract_inverted_index.modifications | 69 |
| abstract_inverted_index.understanding | 185 |
| abstract_inverted_index.administrative | 167 |
| abstract_inverted_index.precipitation, | 65 |
| abstract_inverted_index.transitions.In | 121 |
| abstract_inverted_index.high-resolution | 127 |
| abstract_inverted_index.remotely-sensed | 140 |
| abstract_inverted_index.ecosystems.Global | 74 |
| abstract_inverted_index.nature’s | 46 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.05584063 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |