Global well-posedness and Asymptotic analysis of a nonlinear heat equation with constraints of finite codimension Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.00160
We prove the global existence and the uniqueness of the $L^p\cap H_0^1-$valued ($2\leq p < \infty$) strong solutions of a nonlinear heat equation with constraints over bounded domains in any dimension $d\geq 1$. Along with the \textit{Faedo-Galerkin} approximation method and the compactness arguments, we utilize the monotonicity and the hemicontinuity properties of the nonlinear operators to establish the well-posedness results. In particular, we show that a Hilbertian manifold $\mathbb{M}$, which is the unit sphere in $L^2$ space, describing the constraint is invariant. Finally, in the asymptotic analysis, we generalize the recent work of [P. Antonelli, et. al. \emph{Calc. Var. Partial Differential Equations}, 63(4), 2024] to any bounded smooth domain in $\mathbb{R}^d$, $d\geq1$, when the corresponding nonlinearity is a damping. In particular, we show that, for positive initial datum and any $2\le p < \infty$, the unique positive strong solution of the above mentioned nonlinear heat equation with constraints converges in $L^p\cap H_0^1$ to the unique positive ground state.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.00160
- https://arxiv.org/pdf/2507.00160
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416848241
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416848241Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.00160Digital Object Identifier
- Title
-
Global well-posedness and Asymptotic analysis of a nonlinear heat equation with constraints of finite codimensionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-30Full publication date if available
- Authors
-
Ashish Bawalia, Zdzisław Brzeźniak, Manil T. MohanList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.00160Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.00160Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.00160Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416848241 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.00160 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.00160 |
| ids.openalex | https://openalex.org/W4416848241 |
| fwci | |
| type | preprint |
| title | Global well-posedness and Asymptotic analysis of a nonlinear heat equation with constraints of finite codimension |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.00160 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.00160 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.00160 |
| locations[1].id | doi:10.48550/arxiv.2507.00160 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.00160 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5120529787 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ashish Bawalia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bawalia, Ashish |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5086680181 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8731-6523 |
| authorships[1].author.display_name | Zdzisław Brzeźniak |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Brzeźniak, Zdzisław |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5046452698 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3197-1136 |
| authorships[2].author.display_name | Manil T. Mohan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mohan, Manil T. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.00160 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Global well-posedness and Asymptotic analysis of a nonlinear heat equation with constraints of finite codimension |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-01T10:17:39.263697 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.00160 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.00160 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.00160 |
| primary_location.id | pmh:oai:arXiv.org:2507.00160 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.00160 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.00160 |
| publication_date | 2025-06-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19, 65, 117 |
| abstract_inverted_index.p | 13, 131 |
| abstract_inverted_index.In | 60, 119 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.in | 28, 74, 83, 109, 149 |
| abstract_inverted_index.is | 70, 80, 116 |
| abstract_inverted_index.of | 8, 18, 51, 92, 139 |
| abstract_inverted_index.to | 55, 104, 152 |
| abstract_inverted_index.we | 43, 62, 87, 121 |
| abstract_inverted_index.1$. | 32 |
| abstract_inverted_index.[P. | 93 |
| abstract_inverted_index.al. | 96 |
| abstract_inverted_index.and | 5, 39, 47, 128 |
| abstract_inverted_index.any | 29, 105, 129 |
| abstract_inverted_index.et. | 95 |
| abstract_inverted_index.for | 124 |
| abstract_inverted_index.the | 2, 6, 9, 35, 40, 45, 48, 52, 57, 71, 78, 84, 89, 113, 134, 140, 153 |
| abstract_inverted_index.< | 14, 132 |
| abstract_inverted_index.Var. | 98 |
| abstract_inverted_index.heat | 21, 144 |
| abstract_inverted_index.over | 25 |
| abstract_inverted_index.show | 63, 122 |
| abstract_inverted_index.that | 64 |
| abstract_inverted_index.unit | 72 |
| abstract_inverted_index.when | 112 |
| abstract_inverted_index.with | 23, 34, 146 |
| abstract_inverted_index.work | 91 |
| abstract_inverted_index.$2\le | 130 |
| abstract_inverted_index.$L^2$ | 75 |
| abstract_inverted_index.2024] | 103 |
| abstract_inverted_index.Along | 33 |
| abstract_inverted_index.above | 141 |
| abstract_inverted_index.datum | 127 |
| abstract_inverted_index.prove | 1 |
| abstract_inverted_index.that, | 123 |
| abstract_inverted_index.which | 69 |
| abstract_inverted_index.$d\geq | 31 |
| abstract_inverted_index.63(4), | 102 |
| abstract_inverted_index.H_0^1$ | 151 |
| abstract_inverted_index.domain | 108 |
| abstract_inverted_index.global | 3 |
| abstract_inverted_index.ground | 156 |
| abstract_inverted_index.method | 38 |
| abstract_inverted_index.recent | 90 |
| abstract_inverted_index.smooth | 107 |
| abstract_inverted_index.space, | 76 |
| abstract_inverted_index.sphere | 73 |
| abstract_inverted_index.state. | 157 |
| abstract_inverted_index.strong | 16, 137 |
| abstract_inverted_index.unique | 135, 154 |
| abstract_inverted_index.($2\leq | 12 |
| abstract_inverted_index.Partial | 99 |
| abstract_inverted_index.bounded | 26, 106 |
| abstract_inverted_index.domains | 27 |
| abstract_inverted_index.initial | 126 |
| abstract_inverted_index.utilize | 44 |
| abstract_inverted_index.$L^p\cap | 10, 150 |
| abstract_inverted_index.Finally, | 82 |
| abstract_inverted_index.\infty$) | 15 |
| abstract_inverted_index.\infty$, | 133 |
| abstract_inverted_index.damping. | 118 |
| abstract_inverted_index.equation | 22, 145 |
| abstract_inverted_index.manifold | 67 |
| abstract_inverted_index.positive | 125, 136, 155 |
| abstract_inverted_index.results. | 59 |
| abstract_inverted_index.solution | 138 |
| abstract_inverted_index.$d\geq1$, | 111 |
| abstract_inverted_index.analysis, | 86 |
| abstract_inverted_index.converges | 148 |
| abstract_inverted_index.dimension | 30 |
| abstract_inverted_index.establish | 56 |
| abstract_inverted_index.existence | 4 |
| abstract_inverted_index.mentioned | 142 |
| abstract_inverted_index.nonlinear | 20, 53, 143 |
| abstract_inverted_index.operators | 54 |
| abstract_inverted_index.solutions | 17 |
| abstract_inverted_index.Antonelli, | 94 |
| abstract_inverted_index.Hilbertian | 66 |
| abstract_inverted_index.arguments, | 42 |
| abstract_inverted_index.asymptotic | 85 |
| abstract_inverted_index.constraint | 79 |
| abstract_inverted_index.describing | 77 |
| abstract_inverted_index.generalize | 88 |
| abstract_inverted_index.invariant. | 81 |
| abstract_inverted_index.properties | 50 |
| abstract_inverted_index.uniqueness | 7 |
| abstract_inverted_index.Equations}, | 101 |
| abstract_inverted_index.\emph{Calc. | 97 |
| abstract_inverted_index.compactness | 41 |
| abstract_inverted_index.constraints | 24, 147 |
| abstract_inverted_index.particular, | 61, 120 |
| abstract_inverted_index.Differential | 100 |
| abstract_inverted_index.monotonicity | 46 |
| abstract_inverted_index.nonlinearity | 115 |
| abstract_inverted_index.$\mathbb{M}$, | 68 |
| abstract_inverted_index.H_0^1-$valued | 11 |
| abstract_inverted_index.approximation | 37 |
| abstract_inverted_index.corresponding | 114 |
| abstract_inverted_index.hemicontinuity | 49 |
| abstract_inverted_index.well-posedness | 58 |
| abstract_inverted_index.$\mathbb{R}^d$, | 110 |
| abstract_inverted_index.\textit{Faedo-Galerkin} | 36 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |