GNNavi: Navigating the Information Flow in Large Language Models by Graph Neural Network Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.11709
Large Language Models (LLMs) exhibit strong In-Context Learning (ICL) capabilities when prompts with demonstrations are used. However, fine-tuning still remains crucial to further enhance their adaptability. Prompt-based fine-tuning proves to be an effective fine-tuning method in low-data scenarios, but high demands on computing resources limit its practicality. We address this issue by introducing a prompt-based parameter-efficient fine-tuning (PEFT) approach. GNNavi leverages insights into ICL's information flow dynamics, which indicates that label words act in prompts as anchors for information propagation. GNNavi employs a Graph Neural Network (GNN) layer to precisely guide the aggregation and distribution of information flow during the processing of prompts by hardwiring the desired information flow into the GNN. Our experiments on text classification tasks with GPT-2 and Llama2 show GNNavi surpasses standard prompt-based fine-tuning methods in few-shot settings by updating just 0.2% to 0.5% of parameters. We compare GNNavi with prevalent PEFT approaches, such as prefix tuning, LoRA and Adapter in terms of performance and efficiency. Our analysis reveals that GNNavi enhances information flow and ensures a clear aggregation process.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.11709
- https://arxiv.org/pdf/2402.11709
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391986290
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391986290Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.11709Digital Object Identifier
- Title
-
GNNavi: Navigating the Information Flow in Large Language Models by Graph Neural NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-18Full publication date if available
- Authors
-
Shuzhou Yuan, Ercong Nie, Michael Färber, Helmut Schmid, Hinrich SchützeList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.11709Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.11709Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.11709Direct OA link when available
- Concepts
-
Computer science, Information flow, Graph, Artificial neural network, Flow (mathematics), Artificial intelligence, Theoretical computer science, Linguistics, Mathematics, Philosophy, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391986290 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.11709 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.11709 |
| ids.openalex | https://openalex.org/W4391986290 |
| fwci | |
| type | preprint |
| title | GNNavi: Navigating the Information Flow in Large Language Models by Graph Neural Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9638000130653381 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9470999836921692 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6324517726898193 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779136372 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5292937755584717 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10283002 |
| concepts[1].display_name | Information flow |
| concepts[2].id | https://openalex.org/C132525143 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48839300870895386 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[2].display_name | Graph |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4625309109687805 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C38349280 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44092506170272827 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[4].display_name | Flow (mathematics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3372572660446167 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.30030155181884766 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| concepts[7].id | https://openalex.org/C41895202 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1971280574798584 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[7].display_name | Linguistics |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.11869436502456665 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C138885662 |
| concepts[9].level | 0 |
| concepts[9].score | 0.06503498554229736 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[9].display_name | Philosophy |
| concepts[10].id | https://openalex.org/C2524010 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[10].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6324517726898193 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/information-flow |
| keywords[1].score | 0.5292937755584717 |
| keywords[1].display_name | Information flow |
| keywords[2].id | https://openalex.org/keywords/graph |
| keywords[2].score | 0.48839300870895386 |
| keywords[2].display_name | Graph |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.4625309109687805 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/flow |
| keywords[4].score | 0.44092506170272827 |
| keywords[4].display_name | Flow (mathematics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3372572660446167 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.30030155181884766 |
| keywords[6].display_name | Theoretical computer science |
| keywords[7].id | https://openalex.org/keywords/linguistics |
| keywords[7].score | 0.1971280574798584 |
| keywords[7].display_name | Linguistics |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.11869436502456665 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/philosophy |
| keywords[9].score | 0.06503498554229736 |
| keywords[9].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.11709 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.11709 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.11709 |
| locations[1].id | doi:10.48550/arxiv.2402.11709 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.11709 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5008824325 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shuzhou Yuan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuan, Shuzhou |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054893267 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1453-4460 |
| authorships[1].author.display_name | Ercong Nie |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nie, Ercong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5031600582 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5458-8645 |
| authorships[2].author.display_name | Michael Färber |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Färber, Michael |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5027452875 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8003-7708 |
| authorships[3].author.display_name | Helmut Schmid |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Schmid, Helmut |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5071144367 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Hinrich Schütze |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Schütze, Hinrich |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.11709 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-21T00:00:00 |
| display_name | GNNavi: Navigating the Information Flow in Large Language Models by Graph Neural Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9638000130653381 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2391251536, https://openalex.org/W2362198218, https://openalex.org/W2019521278, https://openalex.org/W2388615687, https://openalex.org/W2129858673, https://openalex.org/W2147462260, https://openalex.org/W2518891271, https://openalex.org/W4288600360, https://openalex.org/W1892058059, https://openalex.org/W3016796767 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.11709 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.11709 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.11709 |
| primary_location.id | pmh:oai:arXiv.org:2402.11709 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.11709 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.11709 |
| publication_date | 2024-02-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 53, 82, 170 |
| abstract_inverted_index.We | 47, 140 |
| abstract_inverted_index.an | 31 |
| abstract_inverted_index.as | 75, 148 |
| abstract_inverted_index.be | 30 |
| abstract_inverted_index.by | 51, 103, 132 |
| abstract_inverted_index.in | 35, 73, 129, 154 |
| abstract_inverted_index.of | 95, 101, 138, 156 |
| abstract_inverted_index.on | 41, 114 |
| abstract_inverted_index.to | 21, 29, 88, 136 |
| abstract_inverted_index.Our | 112, 160 |
| abstract_inverted_index.act | 72 |
| abstract_inverted_index.and | 93, 120, 152, 158, 168 |
| abstract_inverted_index.are | 14 |
| abstract_inverted_index.but | 38 |
| abstract_inverted_index.for | 77 |
| abstract_inverted_index.its | 45 |
| abstract_inverted_index.the | 91, 99, 105, 110 |
| abstract_inverted_index.0.2% | 135 |
| abstract_inverted_index.0.5% | 137 |
| abstract_inverted_index.GNN. | 111 |
| abstract_inverted_index.LoRA | 151 |
| abstract_inverted_index.PEFT | 145 |
| abstract_inverted_index.flow | 65, 97, 108, 167 |
| abstract_inverted_index.high | 39 |
| abstract_inverted_index.into | 62, 109 |
| abstract_inverted_index.just | 134 |
| abstract_inverted_index.show | 122 |
| abstract_inverted_index.such | 147 |
| abstract_inverted_index.text | 115 |
| abstract_inverted_index.that | 69, 163 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.when | 10 |
| abstract_inverted_index.with | 12, 118, 143 |
| abstract_inverted_index.(GNN) | 86 |
| abstract_inverted_index.(ICL) | 8 |
| abstract_inverted_index.GPT-2 | 119 |
| abstract_inverted_index.Graph | 83 |
| abstract_inverted_index.ICL's | 63 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.clear | 171 |
| abstract_inverted_index.guide | 90 |
| abstract_inverted_index.issue | 50 |
| abstract_inverted_index.label | 70 |
| abstract_inverted_index.layer | 87 |
| abstract_inverted_index.limit | 44 |
| abstract_inverted_index.still | 18 |
| abstract_inverted_index.tasks | 117 |
| abstract_inverted_index.terms | 155 |
| abstract_inverted_index.their | 24 |
| abstract_inverted_index.used. | 15 |
| abstract_inverted_index.which | 67 |
| abstract_inverted_index.words | 71 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.(PEFT) | 57 |
| abstract_inverted_index.GNNavi | 59, 80, 123, 142, 164 |
| abstract_inverted_index.Llama2 | 121 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.Neural | 84 |
| abstract_inverted_index.during | 98 |
| abstract_inverted_index.method | 34 |
| abstract_inverted_index.prefix | 149 |
| abstract_inverted_index.proves | 28 |
| abstract_inverted_index.strong | 5 |
| abstract_inverted_index.Adapter | 153 |
| abstract_inverted_index.Network | 85 |
| abstract_inverted_index.address | 48 |
| abstract_inverted_index.anchors | 76 |
| abstract_inverted_index.compare | 141 |
| abstract_inverted_index.crucial | 20 |
| abstract_inverted_index.demands | 40 |
| abstract_inverted_index.desired | 106 |
| abstract_inverted_index.employs | 81 |
| abstract_inverted_index.enhance | 23 |
| abstract_inverted_index.ensures | 169 |
| abstract_inverted_index.exhibit | 4 |
| abstract_inverted_index.further | 22 |
| abstract_inverted_index.methods | 128 |
| abstract_inverted_index.prompts | 11, 74, 102 |
| abstract_inverted_index.remains | 19 |
| abstract_inverted_index.reveals | 162 |
| abstract_inverted_index.tuning, | 150 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.Language | 1 |
| abstract_inverted_index.Learning | 7 |
| abstract_inverted_index.analysis | 161 |
| abstract_inverted_index.enhances | 165 |
| abstract_inverted_index.few-shot | 130 |
| abstract_inverted_index.insights | 61 |
| abstract_inverted_index.low-data | 36 |
| abstract_inverted_index.process. | 173 |
| abstract_inverted_index.settings | 131 |
| abstract_inverted_index.standard | 125 |
| abstract_inverted_index.updating | 133 |
| abstract_inverted_index.approach. | 58 |
| abstract_inverted_index.computing | 42 |
| abstract_inverted_index.dynamics, | 66 |
| abstract_inverted_index.effective | 32 |
| abstract_inverted_index.indicates | 68 |
| abstract_inverted_index.leverages | 60 |
| abstract_inverted_index.precisely | 89 |
| abstract_inverted_index.prevalent | 144 |
| abstract_inverted_index.resources | 43 |
| abstract_inverted_index.surpasses | 124 |
| abstract_inverted_index.In-Context | 6 |
| abstract_inverted_index.hardwiring | 104 |
| abstract_inverted_index.processing | 100 |
| abstract_inverted_index.scenarios, | 37 |
| abstract_inverted_index.aggregation | 92, 172 |
| abstract_inverted_index.approaches, | 146 |
| abstract_inverted_index.efficiency. | 159 |
| abstract_inverted_index.experiments | 113 |
| abstract_inverted_index.fine-tuning | 17, 27, 33, 56, 127 |
| abstract_inverted_index.information | 64, 78, 96, 107, 166 |
| abstract_inverted_index.introducing | 52 |
| abstract_inverted_index.parameters. | 139 |
| abstract_inverted_index.performance | 157 |
| abstract_inverted_index.Prompt-based | 26 |
| abstract_inverted_index.capabilities | 9 |
| abstract_inverted_index.distribution | 94 |
| abstract_inverted_index.prompt-based | 54, 126 |
| abstract_inverted_index.propagation. | 79 |
| abstract_inverted_index.adaptability. | 25 |
| abstract_inverted_index.practicality. | 46 |
| abstract_inverted_index.classification | 116 |
| abstract_inverted_index.demonstrations | 13 |
| abstract_inverted_index.parameter-efficient | 55 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |