Gnowee: A Hybrid Metaheuristic Optimization Algorithm for Constrained, Black Box, Combinatorial Mixed-Integer Design Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1080/00295450.2018.1496692
This paper introduces Gnowee, a modular, Python-based, open-source hybrid metaheuristic optimization algorithm (Available from https://github.com/SlaybaughLab/Gnowee). Gnowee is designed for rapid convergence to nearly globally optimum solutions for complex, constrained nuclear engineering problems with mixed-integer and combinatorial design vectors and high-cost, noisy, discontinuous, black box objective function evaluations. Gnowee's hybrid metaheuristic framework is a new combination of a set of diverse, robust heuristics that appropriately balance diversification and intensification strategies across a wide range of optimization problems. This novel algorithm was specifically developed to optimize complex nuclear design problems; the motivating research problem was the design of material stack-ups to modify neutron energy spectra to specific targeted spectra for applications in nuclear medicine, technical nuclear forensics, nuclear physics, etc. However, there are a wider range of potential applications for this algorithm both within the nuclear community and beyond. To demonstrate Gnowee's behavior for a variety of problem types, comparisons between Gnowee and several well-established metaheuristic algorithms are made for a set of eighteen continuous, mixed-integer, and combinatorial benchmarks. These results demonstrate Gnoweee to have superior flexibility and convergence characteristics over a wide range of design spaces. We anticipate this wide range of applicability will make this algorithm desirable for many complex engineering applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1080/00295450.2018.1496692
- OA Status
- green
- Cited By
- 1
- References
- 46
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2796645819
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2796645819Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/00295450.2018.1496692Digital Object Identifier
- Title
-
Gnowee: A Hybrid Metaheuristic Optimization Algorithm for Constrained, Black Box, Combinatorial Mixed-Integer DesignWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-08-23Full publication date if available
- Authors
-
James E. Bevins, Rachel SlaybaughList of authors in order
- Landing page
-
https://doi.org/10.1080/00295450.2018.1496692Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1804.05429Direct OA link when available
- Concepts
-
Metaheuristic, Computer science, Mathematical optimization, Tabu search, Algorithm, Combinatorial optimization, Heuristics, Optimization problem, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2796645819 |
|---|---|
| doi | https://doi.org/10.1080/00295450.2018.1496692 |
| ids.doi | https://doi.org/10.48550/arxiv.1804.05429 |
| ids.mag | 2796645819 |
| ids.openalex | https://openalex.org/W2796645819 |
| fwci | 0.0 |
| type | preprint |
| title | Gnowee: A Hybrid Metaheuristic Optimization Algorithm for Constrained, Black Box, Combinatorial Mixed-Integer Design |
| biblio.issue | 4 |
| biblio.volume | 205 |
| biblio.last_page | 562 |
| biblio.first_page | 542 |
| topics[0].id | https://openalex.org/T10597 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Nuclear reactor physics and engineering |
| topics[1].id | https://openalex.org/T10848 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9933000206947327 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[2].id | https://openalex.org/T13465 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9921000003814697 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Graphite, nuclear technology, radiation studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C109718341 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6923710703849792 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1385229 |
| concepts[0].display_name | Metaheuristic |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5856754183769226 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C126255220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5798574686050415 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[2].display_name | Mathematical optimization |
| concepts[3].id | https://openalex.org/C123370116 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5705416202545166 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1424540 |
| concepts[3].display_name | Tabu search |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5255302786827087 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C52692508 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5217883586883545 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1333872 |
| concepts[5].display_name | Combinatorial optimization |
| concepts[6].id | https://openalex.org/C127705205 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5159488320350647 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5748245 |
| concepts[6].display_name | Heuristics |
| concepts[7].id | https://openalex.org/C137836250 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46266981959342957 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[7].display_name | Optimization problem |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.23014885187149048 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/metaheuristic |
| keywords[0].score | 0.6923710703849792 |
| keywords[0].display_name | Metaheuristic |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5856754183769226 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[2].score | 0.5798574686050415 |
| keywords[2].display_name | Mathematical optimization |
| keywords[3].id | https://openalex.org/keywords/tabu-search |
| keywords[3].score | 0.5705416202545166 |
| keywords[3].display_name | Tabu search |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.5255302786827087 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/combinatorial-optimization |
| keywords[5].score | 0.5217883586883545 |
| keywords[5].display_name | Combinatorial optimization |
| keywords[6].id | https://openalex.org/keywords/heuristics |
| keywords[6].score | 0.5159488320350647 |
| keywords[6].display_name | Heuristics |
| keywords[7].id | https://openalex.org/keywords/optimization-problem |
| keywords[7].score | 0.46266981959342957 |
| keywords[7].display_name | Optimization problem |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.23014885187149048 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1080/00295450.2018.1496692 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S190997038 |
| locations[0].source.issn | 0029-5450, 1943-7471 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0029-5450 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Nuclear Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Nuclear Technology |
| locations[0].landing_page_url | https://doi.org/10.1080/00295450.2018.1496692 |
| locations[1].id | pmh:oai:arXiv.org:1804.05429 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1804.05429 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1804.05429 |
| locations[2].id | mag:2796645819 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/1804.05429 |
| locations[3].id | pmh:oai:escholarship.org/ark:/13030/qt6rk7c7dd |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306400115 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | eScholarship (California Digital Library) |
| locations[3].source.host_organization | https://openalex.org/I2801248553 |
| locations[3].source.host_organization_name | California Digital Library |
| locations[3].source.host_organization_lineage | https://openalex.org/I2801248553 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Nuclear Technology, vol 205, iss 4 |
| locations[3].landing_page_url | https://escholarship.org/uc/item/6rk7c7dd |
| locations[4].id | doi:10.48550/arxiv.1804.05429 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400194 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | arXiv (Cornell University) |
| locations[4].source.host_organization | https://openalex.org/I205783295 |
| locations[4].source.host_organization_name | Cornell University |
| locations[4].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.48550/arxiv.1804.05429 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5000502069 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6140-199X |
| authorships[0].author.display_name | James E. Bevins |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2799950915, https://openalex.org/I55061410 |
| authorships[0].affiliations[0].raw_affiliation_string | Air Force Institute of Technology, Department of Engineering Physics, 2950 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433 |
| authorships[0].institutions[0].id | https://openalex.org/I55061410 |
| authorships[0].institutions[0].ror | https://ror.org/03f9f1d95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1294991024, https://openalex.org/I1330347796, https://openalex.org/I1330347796, https://openalex.org/I2802362820, https://openalex.org/I4210089612, https://openalex.org/I4210102105, https://openalex.org/I4210102105, https://openalex.org/I55061410 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | U.S. Air Force Institute of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I2799950915 |
| authorships[0].institutions[1].ror | https://ror.org/0097e1k27 |
| authorships[0].institutions[1].type | other |
| authorships[0].institutions[1].lineage | https://openalex.org/I1330347796, https://openalex.org/I2799950915, https://openalex.org/I4210089612, https://openalex.org/I4210102105 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Wright-Patterson Air Force Base |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | James Bevins |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Air Force Institute of Technology, Department of Engineering Physics, 2950 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433 |
| authorships[1].author.id | https://openalex.org/A5027851362 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6296-6519 |
| authorships[1].author.display_name | Rachel Slaybaugh |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[1].affiliations[0].raw_affiliation_string | University of California, Berkeley, Nuclear Engineering Department, 4173 Etcheverry Hall, Berkeley, California 94720 |
| authorships[1].institutions[0].id | https://openalex.org/I95457486 |
| authorships[1].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Berkeley |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Rachel Slaybaugh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of California, Berkeley, Nuclear Engineering Department, 4173 Etcheverry Hall, Berkeley, California 94720 |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1804.05429 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Gnowee: A Hybrid Metaheuristic Optimization Algorithm for Constrained, Black Box, Combinatorial Mixed-Integer Design |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10597 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Nuclear reactor physics and engineering |
| related_works | https://openalex.org/W625560969, https://openalex.org/W2902208508, https://openalex.org/W186014144, https://openalex.org/W1575786379, https://openalex.org/W2972520689, https://openalex.org/W2017925329, https://openalex.org/W1603180966, https://openalex.org/W2317856971, https://openalex.org/W2072821304, https://openalex.org/W2088134664, https://openalex.org/W3205959673, https://openalex.org/W3155679525, https://openalex.org/W2160835648, https://openalex.org/W2164270119, https://openalex.org/W2903983811, https://openalex.org/W2396675612, https://openalex.org/W100245716, https://openalex.org/W2974463220, https://openalex.org/W2118921601, https://openalex.org/W2162034707 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:1804.05429 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1804.05429 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1804.05429 |
| primary_location.id | doi:10.1080/00295450.2018.1496692 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S190997038 |
| primary_location.source.issn | 0029-5450, 1943-7471 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0029-5450 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Nuclear Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Nuclear Technology |
| primary_location.landing_page_url | https://doi.org/10.1080/00295450.2018.1496692 |
| publication_date | 2018-08-23 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2137148026, https://openalex.org/W4253572765, https://openalex.org/W1987494769, https://openalex.org/W1965081037, https://openalex.org/W641467550, https://openalex.org/W1595159159, https://openalex.org/W2085080956, https://openalex.org/W1976744965, https://openalex.org/W1975671633, https://openalex.org/W2208403925, https://openalex.org/W2115367795, https://openalex.org/W2155014525, https://openalex.org/W2074869363, https://openalex.org/W603729728, https://openalex.org/W1997869834, https://openalex.org/W2023106695, https://openalex.org/W2136610504, https://openalex.org/W1503369191, https://openalex.org/W2083334804, https://openalex.org/W2077345223, https://openalex.org/W2084792706, https://openalex.org/W1977523613, https://openalex.org/W2131077880, https://openalex.org/W2010059576, https://openalex.org/W2168750171, https://openalex.org/W2185612927, https://openalex.org/W2101103648, https://openalex.org/W2048421273, https://openalex.org/W2001331635, https://openalex.org/W2100184918, https://openalex.org/W2042986967, https://openalex.org/W2094174254, https://openalex.org/W2138309709, https://openalex.org/W17748033, https://openalex.org/W2152195021, https://openalex.org/W2039911195, https://openalex.org/W2004322850, https://openalex.org/W2020009149, https://openalex.org/W2335540726, https://openalex.org/W2121780193, https://openalex.org/W2023452756, https://openalex.org/W1765427872, https://openalex.org/W1918578756, https://openalex.org/W2151554678, https://openalex.org/W2543580944, https://openalex.org/W1771326151 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 4, 52, 56, 70, 121, 142, 158, 179 |
| abstract_inverted_index.To | 137 |
| abstract_inverted_index.We | 185 |
| abstract_inverted_index.in | 109 |
| abstract_inverted_index.is | 16, 51 |
| abstract_inverted_index.of | 55, 58, 73, 95, 124, 144, 160, 182, 190 |
| abstract_inverted_index.to | 21, 82, 98, 103, 171 |
| abstract_inverted_index.and | 34, 38, 66, 135, 150, 164, 175 |
| abstract_inverted_index.are | 120, 155 |
| abstract_inverted_index.box | 43 |
| abstract_inverted_index.for | 18, 26, 107, 127, 141, 157, 197 |
| abstract_inverted_index.new | 53 |
| abstract_inverted_index.set | 57, 159 |
| abstract_inverted_index.the | 88, 93, 132 |
| abstract_inverted_index.was | 79, 92 |
| abstract_inverted_index.This | 0, 76 |
| abstract_inverted_index.both | 130 |
| abstract_inverted_index.etc. | 117 |
| abstract_inverted_index.from | 13 |
| abstract_inverted_index.have | 172 |
| abstract_inverted_index.made | 156 |
| abstract_inverted_index.make | 193 |
| abstract_inverted_index.many | 198 |
| abstract_inverted_index.over | 178 |
| abstract_inverted_index.that | 62 |
| abstract_inverted_index.this | 128, 187, 194 |
| abstract_inverted_index.wide | 71, 180, 188 |
| abstract_inverted_index.will | 192 |
| abstract_inverted_index.with | 32 |
| abstract_inverted_index.These | 167 |
| abstract_inverted_index.black | 42 |
| abstract_inverted_index.novel | 77 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.range | 72, 123, 181, 189 |
| abstract_inverted_index.rapid | 19 |
| abstract_inverted_index.there | 119 |
| abstract_inverted_index.wider | 122 |
| abstract_inverted_index.Gnowee | 15, 149 |
| abstract_inverted_index.across | 69 |
| abstract_inverted_index.design | 36, 86, 94, 183 |
| abstract_inverted_index.energy | 101 |
| abstract_inverted_index.hybrid | 8, 48 |
| abstract_inverted_index.modify | 99 |
| abstract_inverted_index.nearly | 22 |
| abstract_inverted_index.noisy, | 40 |
| abstract_inverted_index.robust | 60 |
| abstract_inverted_index.types, | 146 |
| abstract_inverted_index.within | 131 |
| abstract_inverted_index.Gnowee, | 3 |
| abstract_inverted_index.Gnoweee | 170 |
| abstract_inverted_index.balance | 64 |
| abstract_inverted_index.between | 148 |
| abstract_inverted_index.beyond. | 136 |
| abstract_inverted_index.complex | 84, 199 |
| abstract_inverted_index.neutron | 100 |
| abstract_inverted_index.nuclear | 29, 85, 110, 113, 115, 133 |
| abstract_inverted_index.optimum | 24 |
| abstract_inverted_index.problem | 91, 145 |
| abstract_inverted_index.results | 168 |
| abstract_inverted_index.several | 151 |
| abstract_inverted_index.spaces. | 184 |
| abstract_inverted_index.spectra | 102, 106 |
| abstract_inverted_index.variety | 143 |
| abstract_inverted_index.vectors | 37 |
| abstract_inverted_index.Gnowee's | 47, 139 |
| abstract_inverted_index.However, | 118 |
| abstract_inverted_index.behavior | 140 |
| abstract_inverted_index.complex, | 27 |
| abstract_inverted_index.designed | 17 |
| abstract_inverted_index.diverse, | 59 |
| abstract_inverted_index.eighteen | 161 |
| abstract_inverted_index.function | 45 |
| abstract_inverted_index.globally | 23 |
| abstract_inverted_index.material | 96 |
| abstract_inverted_index.modular, | 5 |
| abstract_inverted_index.optimize | 83 |
| abstract_inverted_index.physics, | 116 |
| abstract_inverted_index.problems | 31 |
| abstract_inverted_index.research | 90 |
| abstract_inverted_index.specific | 104 |
| abstract_inverted_index.superior | 173 |
| abstract_inverted_index.targeted | 105 |
| abstract_inverted_index.algorithm | 11, 78, 129, 195 |
| abstract_inverted_index.community | 134 |
| abstract_inverted_index.desirable | 196 |
| abstract_inverted_index.developed | 81 |
| abstract_inverted_index.framework | 50 |
| abstract_inverted_index.medicine, | 111 |
| abstract_inverted_index.objective | 44 |
| abstract_inverted_index.potential | 125 |
| abstract_inverted_index.problems. | 75 |
| abstract_inverted_index.problems; | 87 |
| abstract_inverted_index.solutions | 25 |
| abstract_inverted_index.stack-ups | 97 |
| abstract_inverted_index.technical | 112 |
| abstract_inverted_index.(Available | 12 |
| abstract_inverted_index.algorithms | 154 |
| abstract_inverted_index.anticipate | 186 |
| abstract_inverted_index.forensics, | 114 |
| abstract_inverted_index.heuristics | 61 |
| abstract_inverted_index.high-cost, | 39 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.motivating | 89 |
| abstract_inverted_index.strategies | 68 |
| abstract_inverted_index.benchmarks. | 166 |
| abstract_inverted_index.combination | 54 |
| abstract_inverted_index.comparisons | 147 |
| abstract_inverted_index.constrained | 28 |
| abstract_inverted_index.continuous, | 162 |
| abstract_inverted_index.convergence | 20, 176 |
| abstract_inverted_index.demonstrate | 138, 169 |
| abstract_inverted_index.engineering | 30, 200 |
| abstract_inverted_index.flexibility | 174 |
| abstract_inverted_index.open-source | 7 |
| abstract_inverted_index.applications | 108, 126 |
| abstract_inverted_index.evaluations. | 46 |
| abstract_inverted_index.optimization | 10, 74 |
| abstract_inverted_index.specifically | 80 |
| abstract_inverted_index.Python-based, | 6 |
| abstract_inverted_index.applicability | 191 |
| abstract_inverted_index.applications. | 201 |
| abstract_inverted_index.appropriately | 63 |
| abstract_inverted_index.combinatorial | 35, 165 |
| abstract_inverted_index.metaheuristic | 9, 49, 153 |
| abstract_inverted_index.mixed-integer | 33 |
| abstract_inverted_index.discontinuous, | 41 |
| abstract_inverted_index.mixed-integer, | 163 |
| abstract_inverted_index.characteristics | 177 |
| abstract_inverted_index.diversification | 65 |
| abstract_inverted_index.intensification | 67 |
| abstract_inverted_index.well-established | 152 |
| abstract_inverted_index.https://github.com/SlaybaughLab/Gnowee). | 14 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.01889189 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |