GNSS/LiDAR Integration Aided by Self-Adaptive Gaussian Mixture Models in Urban Scenarios: An Approach Robust to Non-Gaussian Noise Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/plans46316.2020.9110157
Accurate and globally referenced positioning is crucial to autonomous systems with navigation requirements, such as unmanned aerial vehicles (UAV) and autonomous driving vehicles (ADV). GNSS/LiDAR integration is a popular sensor pair that can provide outstanding positioning performance in open areas. However, the accuracy is significantly degraded in urban canyons, due to the excessive unmodeled non-Gaussian GNSS outliers caused by multipath effects and none-line-of-sight (NLOS) receptions. As a result, the violation of the Gaussian assumption can severely distort the sensor fusion process, such as the extended Kalman filter (EKF). To mitigate the effects of these non-Gaussian GNSS outliers, this paper proposes to leverage the Gaussian mixture model (GMM) to describe the potential noise of GNSS positioning and apply it to further sensor fusion. Instead of relying on excessive offline parameterization and tuning, the parameters of the GMM are estimated simultaneously based on the residuals of the GNSS measurements using an expectation-maximization (EM) algorithm. Then the state-of-the-art factor graph optimization (FGO) is applied to integrate the GNSS positioning and LiDAR odometry based on the estimated GMM. The experiment in a typical urban canyon is conducted to validate the performance of the proposed method. The result shows that the GMM can effectively mitigate the effects of GNSS outliers and improves positioning performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/plans46316.2020.9110157
- OA Status
- green
- Cited By
- 12
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3034426791
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3034426791Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/plans46316.2020.9110157Digital Object Identifier
- Title
-
GNSS/LiDAR Integration Aided by Self-Adaptive Gaussian Mixture Models in Urban Scenarios: An Approach Robust to Non-Gaussian NoiseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-01Full publication date if available
- Authors
-
Weisong Wen, Xiwei Bai, Li‐Ta Hsu, Tim PfeiferList of authors in order
- Landing page
-
https://doi.org/10.1109/plans46316.2020.9110157Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://ira.lib.polyu.edu.hk/bitstream/10397/92768/1/Wen_Gnss_Integration_Aided.pdfDirect OA link when available
- Concepts
-
GNSS applications, Computer science, Odometry, Kalman filter, Mixture model, Sensor fusion, Gaussian, Artificial intelligence, Leverage (statistics), Computer vision, Outlier, Extended Kalman filter, Lidar, Remote sensing, Global Positioning System, Geography, Mobile robot, Robot, Telecommunications, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 4, 2022: 2, 2021: 2, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3034426791 |
|---|---|
| doi | https://doi.org/10.1109/plans46316.2020.9110157 |
| ids.doi | https://doi.org/10.1109/plans46316.2020.9110157 |
| ids.mag | 3034426791 |
| ids.openalex | https://openalex.org/W3034426791 |
| fwci | 0.98204373 |
| type | article |
| title | GNSS/LiDAR Integration Aided by Self-Adaptive Gaussian Mixture Models in Urban Scenarios: An Approach Robust to Non-Gaussian Noise |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 654 |
| biblio.first_page | 647 |
| topics[0].id | https://openalex.org/T10326 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Indoor and Outdoor Localization Technologies |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T10711 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9983000159263611 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Target Tracking and Data Fusion in Sensor Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C14279187 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8931307792663574 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5514012 |
| concepts[0].display_name | GNSS applications |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7063817381858826 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C49441653 |
| concepts[2].level | 4 |
| concepts[2].score | 0.49947023391723633 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2014717 |
| concepts[2].display_name | Odometry |
| concepts[3].id | https://openalex.org/C157286648 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49738219380378723 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[3].display_name | Kalman filter |
| concepts[4].id | https://openalex.org/C61224824 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4865647852420807 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2260434 |
| concepts[4].display_name | Mixture model |
| concepts[5].id | https://openalex.org/C33954974 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4680475890636444 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[5].display_name | Sensor fusion |
| concepts[6].id | https://openalex.org/C163716315 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46469613909721375 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[6].display_name | Gaussian |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.46214449405670166 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C153083717 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4549417793750763 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[8].display_name | Leverage (statistics) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.44828781485557556 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C79337645 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4420356750488281 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[10].display_name | Outlier |
| concepts[11].id | https://openalex.org/C206833254 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4389040470123291 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5421817 |
| concepts[11].display_name | Extended Kalman filter |
| concepts[12].id | https://openalex.org/C51399673 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42745134234428406 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[12].display_name | Lidar |
| concepts[13].id | https://openalex.org/C62649853 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3540840148925781 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[13].display_name | Remote sensing |
| concepts[14].id | https://openalex.org/C60229501 |
| concepts[14].level | 2 |
| concepts[14].score | 0.2967643141746521 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q18822 |
| concepts[14].display_name | Global Positioning System |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.2037375569343567 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C19966478 |
| concepts[16].level | 3 |
| concepts[16].score | 0.11803469061851501 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[16].display_name | Mobile robot |
| concepts[17].id | https://openalex.org/C90509273 |
| concepts[17].level | 2 |
| concepts[17].score | 0.11410099267959595 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[17].display_name | Robot |
| concepts[18].id | https://openalex.org/C76155785 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0775289535522461 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[18].display_name | Telecommunications |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/gnss-applications |
| keywords[0].score | 0.8931307792663574 |
| keywords[0].display_name | GNSS applications |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7063817381858826 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/odometry |
| keywords[2].score | 0.49947023391723633 |
| keywords[2].display_name | Odometry |
| keywords[3].id | https://openalex.org/keywords/kalman-filter |
| keywords[3].score | 0.49738219380378723 |
| keywords[3].display_name | Kalman filter |
| keywords[4].id | https://openalex.org/keywords/mixture-model |
| keywords[4].score | 0.4865647852420807 |
| keywords[4].display_name | Mixture model |
| keywords[5].id | https://openalex.org/keywords/sensor-fusion |
| keywords[5].score | 0.4680475890636444 |
| keywords[5].display_name | Sensor fusion |
| keywords[6].id | https://openalex.org/keywords/gaussian |
| keywords[6].score | 0.46469613909721375 |
| keywords[6].display_name | Gaussian |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.46214449405670166 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/leverage |
| keywords[8].score | 0.4549417793750763 |
| keywords[8].display_name | Leverage (statistics) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.44828781485557556 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/outlier |
| keywords[10].score | 0.4420356750488281 |
| keywords[10].display_name | Outlier |
| keywords[11].id | https://openalex.org/keywords/extended-kalman-filter |
| keywords[11].score | 0.4389040470123291 |
| keywords[11].display_name | Extended Kalman filter |
| keywords[12].id | https://openalex.org/keywords/lidar |
| keywords[12].score | 0.42745134234428406 |
| keywords[12].display_name | Lidar |
| keywords[13].id | https://openalex.org/keywords/remote-sensing |
| keywords[13].score | 0.3540840148925781 |
| keywords[13].display_name | Remote sensing |
| keywords[14].id | https://openalex.org/keywords/global-positioning-system |
| keywords[14].score | 0.2967643141746521 |
| keywords[14].display_name | Global Positioning System |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.2037375569343567 |
| keywords[15].display_name | Geography |
| keywords[16].id | https://openalex.org/keywords/mobile-robot |
| keywords[16].score | 0.11803469061851501 |
| keywords[16].display_name | Mobile robot |
| keywords[17].id | https://openalex.org/keywords/robot |
| keywords[17].score | 0.11410099267959595 |
| keywords[17].display_name | Robot |
| keywords[18].id | https://openalex.org/keywords/telecommunications |
| keywords[18].score | 0.0775289535522461 |
| keywords[18].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1109/plans46316.2020.9110157 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS) |
| locations[0].landing_page_url | https://doi.org/10.1109/plans46316.2020.9110157 |
| locations[1].id | pmh:oai:ira.lib.polyu.edu.hk:10397/92768 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400205 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PolyU Institutional Research Archive (Hong Kong Polytechnic University) |
| locations[1].source.host_organization | https://openalex.org/I14243506 |
| locations[1].source.host_organization_name | Hong Kong Polytechnic University |
| locations[1].source.host_organization_lineage | https://openalex.org/I14243506 |
| locations[1].license | |
| locations[1].pdf_url | http://ira.lib.polyu.edu.hk/bitstream/10397/92768/1/Wen_Gnss_Integration_Aided.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference Paper |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10397/92768 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5045346492 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4158-0913 |
| authorships[0].author.display_name | Weisong Wen |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[0].affiliations[0].raw_affiliation_string | The Hong Kong Polytechnic University Kowloon, Hong Kong |
| authorships[0].institutions[0].id | https://openalex.org/I14243506 |
| authorships[0].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Weisong Wen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The Hong Kong Polytechnic University Kowloon, Hong Kong |
| authorships[1].author.id | https://openalex.org/A5055217506 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9659-3570 |
| authorships[1].author.display_name | Xiwei Bai |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[1].affiliations[0].raw_affiliation_string | The Hong Kong Polytechnic University Kowloon, Hong Kong |
| authorships[1].institutions[0].id | https://openalex.org/I14243506 |
| authorships[1].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiwei Bai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The Hong Kong Polytechnic University Kowloon, Hong Kong |
| authorships[2].author.id | https://openalex.org/A5044957601 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0352-741X |
| authorships[2].author.display_name | Li‐Ta Hsu |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[2].affiliations[0].raw_affiliation_string | The Hong Kong Polytechnic University Kowloon, Hong Kong |
| authorships[2].institutions[0].id | https://openalex.org/I14243506 |
| authorships[2].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li-Ta Hsu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The Hong Kong Polytechnic University Kowloon, Hong Kong |
| authorships[3].author.id | https://openalex.org/A5019236197 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8974-2278 |
| authorships[3].author.display_name | Tim Pfeifer |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2610724 |
| authorships[3].affiliations[0].raw_affiliation_string | Chemnitz University of Technology, Chemnitz, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I2610724 |
| authorships[3].institutions[0].ror | https://ror.org/00a208s56 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2610724 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Chemnitz University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tim Pfeifer |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chemnitz University of Technology, Chemnitz, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://ira.lib.polyu.edu.hk/bitstream/10397/92768/1/Wen_Gnss_Integration_Aided.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GNSS/LiDAR Integration Aided by Self-Adaptive Gaussian Mixture Models in Urban Scenarios: An Approach Robust to Non-Gaussian Noise |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10326 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Indoor and Outdoor Localization Technologies |
| related_works | https://openalex.org/W4386936491, https://openalex.org/W3007931018, https://openalex.org/W4380763496, https://openalex.org/W3110195467, https://openalex.org/W2100339372, https://openalex.org/W4387559098, https://openalex.org/W4367281123, https://openalex.org/W4387452254, https://openalex.org/W2770318696, https://openalex.org/W1976086917 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:ira.lib.polyu.edu.hk:10397/92768 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400205 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PolyU Institutional Research Archive (Hong Kong Polytechnic University) |
| best_oa_location.source.host_organization | https://openalex.org/I14243506 |
| best_oa_location.source.host_organization_name | Hong Kong Polytechnic University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I14243506 |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://ira.lib.polyu.edu.hk/bitstream/10397/92768/1/Wen_Gnss_Integration_Aided.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Conference Paper |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/10397/92768 |
| primary_location.id | doi:10.1109/plans46316.2020.9110157 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS) |
| primary_location.landing_page_url | https://doi.org/10.1109/plans46316.2020.9110157 |
| publication_date | 2020-04-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2600854517, https://openalex.org/W6756486208, https://openalex.org/W2012502415, https://openalex.org/W2908876396, https://openalex.org/W1567242735, https://openalex.org/W2296228853, https://openalex.org/W4240526499, https://openalex.org/W6779411543, https://openalex.org/W2968618534, https://openalex.org/W6731570455, https://openalex.org/W2979386404, https://openalex.org/W2746349752, https://openalex.org/W2013798594, https://openalex.org/W2031446601, https://openalex.org/W2765305061, https://openalex.org/W1990884907, https://openalex.org/W2150066425, https://openalex.org/W2942655758, https://openalex.org/W2909908358, https://openalex.org/W2775524366, https://openalex.org/W2266435249, https://openalex.org/W2738304489, https://openalex.org/W2920056176, https://openalex.org/W2979824305, https://openalex.org/W6756571127, https://openalex.org/W2963781713, https://openalex.org/W2999063329, https://openalex.org/W6772680645, https://openalex.org/W2942658051, https://openalex.org/W2896094353, https://openalex.org/W2901136733, https://openalex.org/W3105336669, https://openalex.org/W3099590143, https://openalex.org/W2569273543, https://openalex.org/W1966244759, https://openalex.org/W2967932867, https://openalex.org/W2741319181, https://openalex.org/W3011843772, https://openalex.org/W2777742657, https://openalex.org/W4285053689, https://openalex.org/W1592813209, https://openalex.org/W2998114618, https://openalex.org/W2904557485, https://openalex.org/W3095785877, https://openalex.org/W3035759925 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 27, 66, 177 |
| abstract_inverted_index.As | 65 |
| abstract_inverted_index.To | 88 |
| abstract_inverted_index.an | 148 |
| abstract_inverted_index.as | 14, 82 |
| abstract_inverted_index.by | 58 |
| abstract_inverted_index.in | 37, 46, 176 |
| abstract_inverted_index.is | 5, 26, 43, 159, 181 |
| abstract_inverted_index.it | 117 |
| abstract_inverted_index.of | 70, 92, 112, 123, 133, 143, 187, 202 |
| abstract_inverted_index.on | 125, 140, 170 |
| abstract_inverted_index.to | 7, 50, 100, 107, 118, 161, 183 |
| abstract_inverted_index.GMM | 135, 196 |
| abstract_inverted_index.The | 174, 191 |
| abstract_inverted_index.and | 1, 19, 61, 115, 129, 166, 205 |
| abstract_inverted_index.are | 136 |
| abstract_inverted_index.can | 32, 74, 197 |
| abstract_inverted_index.due | 49 |
| abstract_inverted_index.the | 41, 51, 68, 71, 77, 83, 90, 102, 109, 131, 134, 141, 144, 153, 163, 171, 185, 188, 195, 200 |
| abstract_inverted_index.(EM) | 150 |
| abstract_inverted_index.GMM. | 173 |
| abstract_inverted_index.GNSS | 55, 95, 113, 145, 164, 203 |
| abstract_inverted_index.Then | 152 |
| abstract_inverted_index.open | 38 |
| abstract_inverted_index.pair | 30 |
| abstract_inverted_index.such | 13, 81 |
| abstract_inverted_index.that | 31, 194 |
| abstract_inverted_index.this | 97 |
| abstract_inverted_index.with | 10 |
| abstract_inverted_index.(FGO) | 158 |
| abstract_inverted_index.(GMM) | 106 |
| abstract_inverted_index.(UAV) | 18 |
| abstract_inverted_index.LiDAR | 167 |
| abstract_inverted_index.apply | 116 |
| abstract_inverted_index.based | 139, 169 |
| abstract_inverted_index.graph | 156 |
| abstract_inverted_index.model | 105 |
| abstract_inverted_index.noise | 111 |
| abstract_inverted_index.paper | 98 |
| abstract_inverted_index.shows | 193 |
| abstract_inverted_index.these | 93 |
| abstract_inverted_index.urban | 47, 179 |
| abstract_inverted_index.using | 147 |
| abstract_inverted_index.(ADV). | 23 |
| abstract_inverted_index.(EKF). | 87 |
| abstract_inverted_index.(NLOS) | 63 |
| abstract_inverted_index.Kalman | 85 |
| abstract_inverted_index.aerial | 16 |
| abstract_inverted_index.areas. | 39 |
| abstract_inverted_index.canyon | 180 |
| abstract_inverted_index.caused | 57 |
| abstract_inverted_index.factor | 155 |
| abstract_inverted_index.filter | 86 |
| abstract_inverted_index.fusion | 79 |
| abstract_inverted_index.result | 192 |
| abstract_inverted_index.sensor | 29, 78, 120 |
| abstract_inverted_index.Instead | 122 |
| abstract_inverted_index.applied | 160 |
| abstract_inverted_index.crucial | 6 |
| abstract_inverted_index.distort | 76 |
| abstract_inverted_index.driving | 21 |
| abstract_inverted_index.effects | 60, 91, 201 |
| abstract_inverted_index.further | 119 |
| abstract_inverted_index.fusion. | 121 |
| abstract_inverted_index.method. | 190 |
| abstract_inverted_index.mixture | 104 |
| abstract_inverted_index.offline | 127 |
| abstract_inverted_index.popular | 28 |
| abstract_inverted_index.provide | 33 |
| abstract_inverted_index.relying | 124 |
| abstract_inverted_index.result, | 67 |
| abstract_inverted_index.systems | 9 |
| abstract_inverted_index.tuning, | 130 |
| abstract_inverted_index.typical | 178 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.Gaussian | 72, 103 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.accuracy | 42 |
| abstract_inverted_index.canyons, | 48 |
| abstract_inverted_index.degraded | 45 |
| abstract_inverted_index.describe | 108 |
| abstract_inverted_index.extended | 84 |
| abstract_inverted_index.globally | 2 |
| abstract_inverted_index.improves | 206 |
| abstract_inverted_index.leverage | 101 |
| abstract_inverted_index.mitigate | 89, 199 |
| abstract_inverted_index.odometry | 168 |
| abstract_inverted_index.outliers | 56, 204 |
| abstract_inverted_index.process, | 80 |
| abstract_inverted_index.proposed | 189 |
| abstract_inverted_index.proposes | 99 |
| abstract_inverted_index.severely | 75 |
| abstract_inverted_index.unmanned | 15 |
| abstract_inverted_index.validate | 184 |
| abstract_inverted_index.vehicles | 17, 22 |
| abstract_inverted_index.conducted | 182 |
| abstract_inverted_index.estimated | 137, 172 |
| abstract_inverted_index.excessive | 52, 126 |
| abstract_inverted_index.integrate | 162 |
| abstract_inverted_index.multipath | 59 |
| abstract_inverted_index.outliers, | 96 |
| abstract_inverted_index.potential | 110 |
| abstract_inverted_index.residuals | 142 |
| abstract_inverted_index.unmodeled | 53 |
| abstract_inverted_index.violation | 69 |
| abstract_inverted_index.GNSS/LiDAR | 24 |
| abstract_inverted_index.algorithm. | 151 |
| abstract_inverted_index.assumption | 73 |
| abstract_inverted_index.autonomous | 8, 20 |
| abstract_inverted_index.experiment | 175 |
| abstract_inverted_index.navigation | 11 |
| abstract_inverted_index.parameters | 132 |
| abstract_inverted_index.referenced | 3 |
| abstract_inverted_index.effectively | 198 |
| abstract_inverted_index.integration | 25 |
| abstract_inverted_index.outstanding | 34 |
| abstract_inverted_index.performance | 36, 186 |
| abstract_inverted_index.positioning | 4, 35, 114, 165, 207 |
| abstract_inverted_index.receptions. | 64 |
| abstract_inverted_index.measurements | 146 |
| abstract_inverted_index.non-Gaussian | 54, 94 |
| abstract_inverted_index.optimization | 157 |
| abstract_inverted_index.performance. | 208 |
| abstract_inverted_index.requirements, | 12 |
| abstract_inverted_index.significantly | 44 |
| abstract_inverted_index.simultaneously | 138 |
| abstract_inverted_index.parameterization | 128 |
| abstract_inverted_index.state-of-the-art | 154 |
| abstract_inverted_index.none-line-of-sight | 62 |
| abstract_inverted_index.expectation-maximization | 149 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 93 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.7666074 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |