GPM-Based Multitemporal Weighted Precipitation Analysis Using GPM_IMERGDF Product and ASTER DEM in EDBF Algorithm Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/rs12193162
To obtain the high-resolution multitemporal precipitation using spatial downscaling technique on a precipitation dataset may provide a better representation of the spatial variability of precipitation to be used for different purposes. In this research, a new downscaling methodology such as the global precipitation mission (GPM)-based multitemporal weighted precipitation analysis (GMWPA) at 0.05° resolution is developed and applied in the humid region of Mainland China by employing the GPM dataset at 0.1° and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m DEM-based geospatial predictors, i.e., elevation, longitude, and latitude in empirical distribution-based framework (EDBF) algorithm. The proposed methodology is a two-stepped process in which a scale-dependent regression analysis between each individual precipitation variable and the EDBF-based weighted precipitation with geospatial predictor(s), and to downscale the predicted multitemporal weighted precipitation at a refined scale is developed for the downscaling of GMWPA. While comparing results, it shows that the weighted precipitation outperformed all precipitation variables in terms of the coefficient of determination (R2) value, whereas they outperformed the annual precipitation variables and underperformed as compared to the seasonal and the monthly variables in terms of the calculated root mean square error (RMSE) value. Based on the achieved results, the weighted precipitation at the low-resolution (e.g., at 0.75° resolution) along-with the original resolution (e.g., at 0.1° resolution) is employed in the downscaling process to predict the average multitemporal precipitation, the annual total precipitation for the year 2001 and 2004, and the average annual precipitation (2001–2015) at 0.05° resolution, respectively. The downscaling approach resulting through proposed methodology captured the spatial patterns with greater accuracy at higher spatial resolution. This work showed that it is feasible to increase the spatial resolution of a precipitation variable(s) with greater accuracy on an annual basis or as an average from the multitemporal precipitation dataset using a geospatial predictor as the proxy of precipitation through the weighted precipitation in EDBF environment.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs12193162
- https://www.mdpi.com/2072-4292/12/19/3162/pdf?version=1601363298
- OA Status
- gold
- Cited By
- 30
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3090202509
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3090202509Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs12193162Digital Object Identifier
- Title
-
GPM-Based Multitemporal Weighted Precipitation Analysis Using GPM_IMERGDF Product and ASTER DEM in EDBF AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-09-26Full publication date if available
- Authors
-
Sana Ullah, Zhengkang Zuo, Feizhou Zhang, Jianghua Zheng, Shifeng Huang, Yi Lin, Imran Iqbal, Yiyuan Sun, Ming Yang, Lei YanList of authors in order
- Landing page
-
https://doi.org/10.3390/rs12193162Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/12/19/3162/pdf?version=1601363298Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/12/19/3162/pdf?version=1601363298Direct OA link when available
- Concepts
-
Downscaling, Precipitation, Environmental science, Global Precipitation Measurement, Advanced Spaceborne Thermal Emission and Reflection Radiometer, Climatology, Algorithm, Remote sensing, Meteorology, Geology, Mathematics, Digital elevation model, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
30Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 2, 2023: 2, 2022: 3, 2021: 18Per-year citation counts (last 5 years)
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3090202509 |
|---|---|
| doi | https://doi.org/10.3390/rs12193162 |
| ids.doi | https://doi.org/10.3390/rs12193162 |
| ids.mag | 3090202509 |
| ids.openalex | https://openalex.org/W3090202509 |
| fwci | 2.39821626 |
| type | article |
| title | GPM-Based Multitemporal Weighted Precipitation Analysis Using GPM_IMERGDF Product and ASTER DEM in EDBF Algorithm |
| biblio.issue | 19 |
| biblio.volume | 12 |
| biblio.last_page | 3162 |
| biblio.first_page | 3162 |
| topics[0].id | https://openalex.org/T11234 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Precipitation Measurement and Analysis |
| topics[1].id | https://openalex.org/T10644 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Cryospheric studies and observations |
| topics[2].id | https://openalex.org/T10029 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9988999962806702 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Climate variability and models |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41156917 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8610941767692566 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q682831 |
| concepts[0].display_name | Downscaling |
| concepts[1].id | https://openalex.org/C107054158 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6980279684066772 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25257 |
| concepts[1].display_name | Precipitation |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6388579607009888 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C29278236 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5884007215499878 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3108963 |
| concepts[3].display_name | Global Precipitation Measurement |
| concepts[4].id | https://openalex.org/C13772937 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5689811706542969 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q298019 |
| concepts[4].display_name | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
| concepts[5].id | https://openalex.org/C49204034 |
| concepts[5].level | 1 |
| concepts[5].score | 0.44946861267089844 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[5].display_name | Climatology |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3331596851348877 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C62649853 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3186410665512085 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[7].display_name | Remote sensing |
| concepts[8].id | https://openalex.org/C153294291 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2893679738044739 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[8].display_name | Meteorology |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.21170997619628906 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2024601399898529 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C181843262 |
| concepts[11].level | 2 |
| concepts[11].score | 0.17114612460136414 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q640492 |
| concepts[11].display_name | Digital elevation model |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.12288695573806763 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/downscaling |
| keywords[0].score | 0.8610941767692566 |
| keywords[0].display_name | Downscaling |
| keywords[1].id | https://openalex.org/keywords/precipitation |
| keywords[1].score | 0.6980279684066772 |
| keywords[1].display_name | Precipitation |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.6388579607009888 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/global-precipitation-measurement |
| keywords[3].score | 0.5884007215499878 |
| keywords[3].display_name | Global Precipitation Measurement |
| keywords[4].id | https://openalex.org/keywords/advanced-spaceborne-thermal-emission-and-reflection-radiometer |
| keywords[4].score | 0.5689811706542969 |
| keywords[4].display_name | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
| keywords[5].id | https://openalex.org/keywords/climatology |
| keywords[5].score | 0.44946861267089844 |
| keywords[5].display_name | Climatology |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.3331596851348877 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/remote-sensing |
| keywords[7].score | 0.3186410665512085 |
| keywords[7].display_name | Remote sensing |
| keywords[8].id | https://openalex.org/keywords/meteorology |
| keywords[8].score | 0.2893679738044739 |
| keywords[8].display_name | Meteorology |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.21170997619628906 |
| keywords[9].display_name | Geology |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.2024601399898529 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/digital-elevation-model |
| keywords[11].score | 0.17114612460136414 |
| keywords[11].display_name | Digital elevation model |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.12288695573806763 |
| keywords[12].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/rs12193162 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/12/19/3162/pdf?version=1601363298 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs12193162 |
| locations[1].id | pmh:oai:doaj.org/article:25b2d21c49de4568878fcf32e58161f5 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 12, Iss 19, p 3162 (2020) |
| locations[1].landing_page_url | https://doaj.org/article/25b2d21c49de4568878fcf32e58161f5 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/12/19/3162/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 12; Issue 19; Pages: 3162 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs12193162 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101689079 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4379-1426 |
| authorships[0].author.display_name | Sana Ullah |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3129996945 |
| authorships[0].affiliations[0].raw_affiliation_string | Guangxi Key Laboratory of Remote Measuring System, Guilin University of Aerospace Technology, Guilin 541004, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I20231570 |
| authorships[0].affiliations[1].raw_affiliation_string | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[0].institutions[0].id | https://openalex.org/I3129996945 |
| authorships[0].institutions[0].ror | https://ror.org/00h1gc758 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3129996945 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guilin University of Aerospace Technology |
| authorships[0].institutions[1].id | https://openalex.org/I20231570 |
| authorships[0].institutions[1].ror | https://ror.org/02v51f717 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I20231570 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Peking University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sana Ullah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China, Guangxi Key Laboratory of Remote Measuring System, Guilin University of Aerospace Technology, Guilin 541004, China |
| authorships[1].author.id | https://openalex.org/A5025329106 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1255-6332 |
| authorships[1].author.display_name | Zhengkang Zuo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[1].institutions[0].id | https://openalex.org/I20231570 |
| authorships[1].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Peking University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhengkang Zuo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[2].author.id | https://openalex.org/A5015661510 |
| authorships[2].author.orcid | https://orcid.org/0009-0009-7083-707X |
| authorships[2].author.display_name | Feizhou Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[2].institutions[0].id | https://openalex.org/I20231570 |
| authorships[2].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Peking University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Feizhou Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[3].author.id | https://openalex.org/A5108658599 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jianghua Zheng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I96908189 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China |
| authorships[3].institutions[0].id | https://openalex.org/I96908189 |
| authorships[3].institutions[0].ror | https://ror.org/059gw8r13 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I96908189 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xinjiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jianghua Zheng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Resources and Environment Science, Xinjiang University, Urumqi 830046, China |
| authorships[4].author.id | https://openalex.org/A5101958231 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1086-7479 |
| authorships[4].author.display_name | Shifeng Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210092032 |
| authorships[4].affiliations[0].raw_affiliation_string | State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210092032 |
| authorships[4].institutions[0].ror | https://ror.org/00m4czf33 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210092032 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China Institute of Water Resources and Hydropower Research |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shifeng Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China |
| authorships[5].author.id | https://openalex.org/A5100762397 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3396-3327 |
| authorships[5].author.display_name | Yi Lin |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[5].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[5].institutions[0].id | https://openalex.org/I20231570 |
| authorships[5].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Peking University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yi Lin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[6].author.id | https://openalex.org/A5082806106 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7031-6674 |
| authorships[6].author.display_name | Imran Iqbal |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM, Peking University, Beijing 100871, China |
| authorships[6].institutions[0].id | https://openalex.org/I20231570 |
| authorships[6].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Peking University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Imran Iqbal |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM, Peking University, Beijing 100871, China |
| authorships[7].author.id | https://openalex.org/A5080077644 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1769-0285 |
| authorships[7].author.display_name | Yiyuan Sun |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[7].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I154893126 |
| authorships[7].affiliations[1].raw_affiliation_string | Key Laboratory of Mountain Resources and Environmental Remote Sensing, School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550001, China |
| authorships[7].institutions[0].id | https://openalex.org/I154893126 |
| authorships[7].institutions[0].ror | https://ror.org/02x1pa065 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I154893126 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Guizhou Normal University |
| authorships[7].institutions[1].id | https://openalex.org/I20231570 |
| authorships[7].institutions[1].ror | https://ror.org/02v51f717 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I20231570 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Peking University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yiyuan Sun |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China, Key Laboratory of Mountain Resources and Environmental Remote Sensing, School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550001, China |
| authorships[8].author.id | https://openalex.org/A5062225206 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-0310-5839 |
| authorships[8].author.display_name | Ming Yang |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[8].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[8].institutions[0].id | https://openalex.org/I20231570 |
| authorships[8].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Peking University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Ming Yang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[9].author.id | https://openalex.org/A5045473603 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-0965-4636 |
| authorships[9].author.display_name | Lei Yan |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[9].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I3129996945 |
| authorships[9].affiliations[1].raw_affiliation_string | Guangxi Key Laboratory of Remote Measuring System, Guilin University of Aerospace Technology, Guilin 541004, China |
| authorships[9].institutions[0].id | https://openalex.org/I3129996945 |
| authorships[9].institutions[0].ror | https://ror.org/00h1gc758 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I3129996945 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Guilin University of Aerospace Technology |
| authorships[9].institutions[1].id | https://openalex.org/I20231570 |
| authorships[9].institutions[1].ror | https://ror.org/02v51f717 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I20231570 |
| authorships[9].institutions[1].country_code | CN |
| authorships[9].institutions[1].display_name | Peking University |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Lei Yan |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | Beijing Key Laboratory of Space Information Integration and 3s Application, School of Earth and Space Science, Peking University, Beijing 100871, China, Guangxi Key Laboratory of Remote Measuring System, Guilin University of Aerospace Technology, Guilin 541004, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/12/19/3162/pdf?version=1601363298 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GPM-Based Multitemporal Weighted Precipitation Analysis Using GPM_IMERGDF Product and ASTER DEM in EDBF Algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11234 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Precipitation Measurement and Analysis |
| related_works | https://openalex.org/W2394436593, https://openalex.org/W3013458534, https://openalex.org/W3010558748, https://openalex.org/W2526815458, https://openalex.org/W4220911053, https://openalex.org/W2380042710, https://openalex.org/W4377833746, https://openalex.org/W4387102043, https://openalex.org/W2354666346, https://openalex.org/W4321786814 |
| cited_by_count | 30 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 18 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs12193162 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/12/19/3162/pdf?version=1601363298 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs12193162 |
| primary_location.id | doi:10.3390/rs12193162 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/12/19/3162/pdf?version=1601363298 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs12193162 |
| publication_date | 2020-09-26 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2089149595, https://openalex.org/W2805797359, https://openalex.org/W1983745221, https://openalex.org/W1990364733, https://openalex.org/W2061436185, https://openalex.org/W2031264828, https://openalex.org/W2026865765, https://openalex.org/W2151033096, https://openalex.org/W2048069199, https://openalex.org/W2342270927, https://openalex.org/W2009907489, https://openalex.org/W2072183993, https://openalex.org/W1987688587, https://openalex.org/W2049899966, https://openalex.org/W1129783503, https://openalex.org/W2075171190, https://openalex.org/W2013537840, https://openalex.org/W2096533595, https://openalex.org/W2072844554, https://openalex.org/W2148265007, https://openalex.org/W2397311736, https://openalex.org/W2261645655, https://openalex.org/W2094653192, https://openalex.org/W2172877736, https://openalex.org/W2140994193, https://openalex.org/W1995622703, https://openalex.org/W2753753116, https://openalex.org/W3035174126, https://openalex.org/W2073298425, https://openalex.org/W2007051388, https://openalex.org/W2016295636, https://openalex.org/W2563560677, https://openalex.org/W2736539021, https://openalex.org/W2145088822, https://openalex.org/W2093675520, https://openalex.org/W2093654206, https://openalex.org/W2463437968, https://openalex.org/W2141714266, https://openalex.org/W2144051257, https://openalex.org/W2788313662, https://openalex.org/W2030716213, https://openalex.org/W1983103686, https://openalex.org/W2201111821, https://openalex.org/W1588650177, https://openalex.org/W2759725738, https://openalex.org/W2022349500, https://openalex.org/W2075258897, https://openalex.org/W2974519933, https://openalex.org/W2909764738, https://openalex.org/W2403862144, https://openalex.org/W1588622902, https://openalex.org/W1978018057, https://openalex.org/W6678869363, https://openalex.org/W3119676538, https://openalex.org/W2027901189, https://openalex.org/W1980398615, https://openalex.org/W1564372824, https://openalex.org/W6601986382, https://openalex.org/W1990330790, https://openalex.org/W47390315, https://openalex.org/W2126811106 |
| referenced_works_count | 61 |
| abstract_inverted_index.a | 11, 16, 34, 101, 106, 132, 279, 299 |
| abstract_inverted_index.m | 82 |
| abstract_inverted_index.30 | 81 |
| abstract_inverted_index.In | 31 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.an | 286, 291 |
| abstract_inverted_index.as | 39, 173, 290, 302 |
| abstract_inverted_index.at | 50, 69, 131, 201, 205, 213, 244, 262 |
| abstract_inverted_index.be | 26 |
| abstract_inverted_index.by | 64 |
| abstract_inverted_index.in | 57, 91, 104, 155, 182, 218, 311 |
| abstract_inverted_index.is | 53, 100, 135, 216, 271 |
| abstract_inverted_index.it | 145, 270 |
| abstract_inverted_index.of | 19, 23, 61, 140, 157, 160, 184, 278, 305 |
| abstract_inverted_index.on | 10, 194, 285 |
| abstract_inverted_index.or | 289 |
| abstract_inverted_index.to | 25, 124, 175, 222, 273 |
| abstract_inverted_index.GPM | 67 |
| abstract_inverted_index.The | 97, 248 |
| abstract_inverted_index.all | 152 |
| abstract_inverted_index.and | 55, 71, 77, 89, 115, 123, 171, 178, 236, 238 |
| abstract_inverted_index.for | 28, 137, 232 |
| abstract_inverted_index.may | 14 |
| abstract_inverted_index.new | 35 |
| abstract_inverted_index.the | 2, 20, 40, 58, 66, 72, 116, 126, 138, 148, 158, 167, 176, 179, 185, 195, 198, 202, 209, 219, 224, 228, 233, 239, 256, 275, 294, 303, 308 |
| abstract_inverted_index.(R2) | 162 |
| abstract_inverted_index.2001 | 235 |
| abstract_inverted_index.EDBF | 312 |
| abstract_inverted_index.This | 266 |
| abstract_inverted_index.each | 111 |
| abstract_inverted_index.from | 293 |
| abstract_inverted_index.mean | 188 |
| abstract_inverted_index.root | 187 |
| abstract_inverted_index.such | 38 |
| abstract_inverted_index.that | 147, 269 |
| abstract_inverted_index.they | 165 |
| abstract_inverted_index.this | 32 |
| abstract_inverted_index.used | 27 |
| abstract_inverted_index.with | 120, 259, 282 |
| abstract_inverted_index.work | 267 |
| abstract_inverted_index.year | 234 |
| abstract_inverted_index.0.1° | 70, 214 |
| abstract_inverted_index.2004, | 237 |
| abstract_inverted_index.Based | 193 |
| abstract_inverted_index.China | 63 |
| abstract_inverted_index.While | 142 |
| abstract_inverted_index.basis | 288 |
| abstract_inverted_index.error | 190 |
| abstract_inverted_index.humid | 59 |
| abstract_inverted_index.i.e., | 86 |
| abstract_inverted_index.proxy | 304 |
| abstract_inverted_index.scale | 134 |
| abstract_inverted_index.shows | 146 |
| abstract_inverted_index.terms | 156, 183 |
| abstract_inverted_index.total | 230 |
| abstract_inverted_index.using | 6, 298 |
| abstract_inverted_index.which | 105 |
| abstract_inverted_index.(EDBF) | 95 |
| abstract_inverted_index.(RMSE) | 191 |
| abstract_inverted_index.(e.g., | 204, 212 |
| abstract_inverted_index.0.05° | 51, 245 |
| abstract_inverted_index.0.75° | 206 |
| abstract_inverted_index.GMWPA. | 141 |
| abstract_inverted_index.annual | 168, 229, 241, 287 |
| abstract_inverted_index.better | 17 |
| abstract_inverted_index.global | 41 |
| abstract_inverted_index.higher | 263 |
| abstract_inverted_index.obtain | 1 |
| abstract_inverted_index.region | 60 |
| abstract_inverted_index.showed | 268 |
| abstract_inverted_index.square | 189 |
| abstract_inverted_index.value, | 163 |
| abstract_inverted_index.value. | 192 |
| abstract_inverted_index.(ASTER) | 80 |
| abstract_inverted_index.(GMWPA) | 49 |
| abstract_inverted_index.Thermal | 75 |
| abstract_inverted_index.applied | 56 |
| abstract_inverted_index.average | 225, 240, 292 |
| abstract_inverted_index.between | 110 |
| abstract_inverted_index.dataset | 13, 68, 297 |
| abstract_inverted_index.greater | 260, 283 |
| abstract_inverted_index.mission | 43 |
| abstract_inverted_index.monthly | 180 |
| abstract_inverted_index.predict | 223 |
| abstract_inverted_index.process | 103, 221 |
| abstract_inverted_index.provide | 15 |
| abstract_inverted_index.refined | 133 |
| abstract_inverted_index.spatial | 7, 21, 257, 264, 276 |
| abstract_inverted_index.through | 252, 307 |
| abstract_inverted_index.whereas | 164 |
| abstract_inverted_index.Advanced | 73 |
| abstract_inverted_index.Emission | 76 |
| abstract_inverted_index.Mainland | 62 |
| abstract_inverted_index.accuracy | 261, 284 |
| abstract_inverted_index.achieved | 196 |
| abstract_inverted_index.analysis | 48, 109 |
| abstract_inverted_index.approach | 250 |
| abstract_inverted_index.captured | 255 |
| abstract_inverted_index.compared | 174 |
| abstract_inverted_index.employed | 217 |
| abstract_inverted_index.feasible | 272 |
| abstract_inverted_index.increase | 274 |
| abstract_inverted_index.latitude | 90 |
| abstract_inverted_index.original | 210 |
| abstract_inverted_index.patterns | 258 |
| abstract_inverted_index.proposed | 98, 253 |
| abstract_inverted_index.results, | 144, 197 |
| abstract_inverted_index.seasonal | 177 |
| abstract_inverted_index.variable | 114 |
| abstract_inverted_index.weighted | 46, 118, 129, 149, 199, 309 |
| abstract_inverted_index.DEM-based | 83 |
| abstract_inverted_index.comparing | 143 |
| abstract_inverted_index.developed | 54, 136 |
| abstract_inverted_index.different | 29 |
| abstract_inverted_index.downscale | 125 |
| abstract_inverted_index.empirical | 92 |
| abstract_inverted_index.employing | 65 |
| abstract_inverted_index.framework | 94 |
| abstract_inverted_index.predicted | 127 |
| abstract_inverted_index.predictor | 301 |
| abstract_inverted_index.purposes. | 30 |
| abstract_inverted_index.research, | 33 |
| abstract_inverted_index.resulting | 251 |
| abstract_inverted_index.technique | 9 |
| abstract_inverted_index.variables | 154, 170, 181 |
| abstract_inverted_index.EDBF-based | 117 |
| abstract_inverted_index.Radiometer | 79 |
| abstract_inverted_index.Reflection | 78 |
| abstract_inverted_index.Spaceborne | 74 |
| abstract_inverted_index.algorithm. | 96 |
| abstract_inverted_index.along-with | 208 |
| abstract_inverted_index.calculated | 186 |
| abstract_inverted_index.elevation, | 87 |
| abstract_inverted_index.geospatial | 84, 121, 300 |
| abstract_inverted_index.individual | 112 |
| abstract_inverted_index.longitude, | 88 |
| abstract_inverted_index.regression | 108 |
| abstract_inverted_index.resolution | 52, 211, 277 |
| abstract_inverted_index.(GPM)-based | 44 |
| abstract_inverted_index.coefficient | 159 |
| abstract_inverted_index.downscaling | 8, 36, 139, 220, 249 |
| abstract_inverted_index.methodology | 37, 99, 254 |
| abstract_inverted_index.predictors, | 85 |
| abstract_inverted_index.resolution) | 207, 215 |
| abstract_inverted_index.resolution, | 246 |
| abstract_inverted_index.resolution. | 265 |
| abstract_inverted_index.two-stepped | 102 |
| abstract_inverted_index.variability | 22 |
| abstract_inverted_index.variable(s) | 281 |
| abstract_inverted_index.environment. | 313 |
| abstract_inverted_index.outperformed | 151, 166 |
| abstract_inverted_index.(2001–2015) | 243 |
| abstract_inverted_index.determination | 161 |
| abstract_inverted_index.multitemporal | 4, 45, 128, 226, 295 |
| abstract_inverted_index.precipitation | 5, 12, 24, 42, 47, 113, 119, 130, 150, 153, 169, 200, 231, 242, 280, 296, 306, 310 |
| abstract_inverted_index.predictor(s), | 122 |
| abstract_inverted_index.respectively. | 247 |
| abstract_inverted_index.low-resolution | 203 |
| abstract_inverted_index.precipitation, | 227 |
| abstract_inverted_index.representation | 18 |
| abstract_inverted_index.underperformed | 172 |
| abstract_inverted_index.high-resolution | 3 |
| abstract_inverted_index.scale-dependent | 107 |
| abstract_inverted_index.distribution-based | 93 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5045473603 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I20231570, https://openalex.org/I3129996945 |
| citation_normalized_percentile.value | 0.89771044 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |