GPU-accelerated Monte Carlo simulation of MV-CBCT Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1088/1361-6560/abaeba
Monte Carlo simulation (MCS) is one of the most accurate computation methods for dose calculation and image formation in radiation therapy. However, the high computational complexity and long execution time of MCS limits its broad use. In this paper, we present a novel strategy to accelerate MCS using a graphic processing unit (GPU), and we demonstrate the application in mega-voltage (MV) cone-beam computed tomography (CBCT) simulation. A new framework that generates a series of MV projections from a single simulation run is designed specifically for MV-CBCT acquisition. A Geant4-based GPU code for photon simulation is incorporated into the framework for the simulation of photon transport through a phantom volume. The FastEPID method, which accelerates the simulation of MV images, is modified and integrated into the framework. The proposed GPU-based simulation strategy was tested for its accuracy and efficiency in a Catphan 604 phantom and an anthropomorphic pelvis phantom with beam energies at 2.5 MV, 6 MV, and 6 MV FFF. In all cases, the proposed GPU-based simulation demonstrated great simulation accuracy and excellent agreement with measurement and CPU-based simulation in terms of reconstructed image qualities. The MV-CBCT simulation was accelerated by factors of roughly 900–2300 using an NVIDIA Tesla V100 GPU card against a 2.5 GHz AMD Opteron™ Processor 6380.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1361-6560/abaeba
- OA Status
- green
- Cited By
- 9
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3048382340
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3048382340Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1361-6560/abaebaDigital Object Identifier
- Title
-
GPU-accelerated Monte Carlo simulation of MV-CBCTWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-12Full publication date if available
- Authors
-
Mengying Shi, Marios Myronakis, Matthew W. Jacobson, D. Ferguson, Christopher Williams, Mathias Lehmann, Paul Baturin, Pascal Huber, Rony Fueglistaller, Ingrid Valencia Lozano, Thomas C. Harris, Daniel Morf, Ross BerbecoList of authors in order
- Landing page
-
https://doi.org/10.1088/1361-6560/abaebaPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/9100851Direct OA link when available
- Concepts
-
Monte Carlo method, Computer science, Computer graphics (images), Computational science, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 1, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3048382340 |
|---|---|
| doi | https://doi.org/10.1088/1361-6560/abaeba |
| ids.doi | https://doi.org/10.1088/1361-6560/abaeba |
| ids.mag | 3048382340 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33263311 |
| ids.openalex | https://openalex.org/W3048382340 |
| fwci | 0.37714568 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D003196 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Computer Graphics |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D003198 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Computer Simulation |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D054893 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Cone-Beam Computed Tomography |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D009010 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Monte Carlo Method |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D019047 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Phantoms, Imaging |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D017785 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Photons |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D003196 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Computer Graphics |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D003198 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Computer Simulation |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D054893 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Cone-Beam Computed Tomography |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D009010 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Monte Carlo Method |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D019047 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Phantoms, Imaging |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D017785 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Photons |
| type | article |
| title | GPU-accelerated Monte Carlo simulation of MV-CBCT |
| awards[0].id | https://openalex.org/G6370769013 |
| awards[0].funder_id | https://openalex.org/F4320337351 |
| awards[0].display_name | |
| awards[0].funder_award_id | R01CA188446 |
| awards[0].funder_display_name | National Cancer Institute |
| biblio.issue | 23 |
| biblio.volume | 65 |
| biblio.last_page | 235042 |
| biblio.first_page | 235042 |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T11216 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3108 |
| topics[1].subfield.display_name | Radiation |
| topics[1].display_name | Radiation Detection and Scintillator Technologies |
| topics[2].id | https://openalex.org/T12386 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9961000084877014 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced X-ray and CT Imaging |
| funders[0].id | https://openalex.org/F4320309603 |
| funders[0].ror | https://ror.org/05yab6874 |
| funders[0].display_name | Varian Medical Systems |
| funders[1].id | https://openalex.org/F4320337351 |
| funders[1].ror | https://ror.org/040gcmg81 |
| funders[1].display_name | National Cancer Institute |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C19499675 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8075532913208008 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[0].display_name | Monte Carlo method |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5267398357391357 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C121684516 |
| concepts[2].level | 1 |
| concepts[2].score | 0.36000990867614746 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[2].display_name | Computer graphics (images) |
| concepts[3].id | https://openalex.org/C459310 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3328578472137451 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q117801 |
| concepts[3].display_name | Computational science |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.12077462673187256 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.06949573755264282 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[0].score | 0.8075532913208008 |
| keywords[0].display_name | Monte Carlo method |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5267398357391357 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-graphics |
| keywords[2].score | 0.36000990867614746 |
| keywords[2].display_name | Computer graphics (images) |
| keywords[3].id | https://openalex.org/keywords/computational-science |
| keywords[3].score | 0.3328578472137451 |
| keywords[3].display_name | Computational science |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.12077462673187256 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.06949573755264282 |
| keywords[5].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1088/1361-6560/abaeba |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S20241394 |
| locations[0].source.issn | 0031-9155, 1361-6560 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0031-9155 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Physics in Medicine and Biology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Physics in Medicine & Biology |
| locations[0].landing_page_url | https://doi.org/10.1088/1361-6560/abaeba |
| locations[1].id | pmid:33263311 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Physics in medicine and biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33263311 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9100851 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Phys Med Biol |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9100851 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5111218786 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mengying Shi |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1283280774, https://openalex.org/I133738476, https://openalex.org/I136199984, https://openalex.org/I4210117453 |
| authorships[0].affiliations[0].raw_affiliation_string | Medical Physics Program, Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, United States of America. Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America. |
| authorships[0].institutions[0].id | https://openalex.org/I1283280774 |
| authorships[0].institutions[0].ror | https://ror.org/04b6nzv94 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1283280774, https://openalex.org/I48633490 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Brigham and Women's Hospital |
| authorships[0].institutions[1].id | https://openalex.org/I4210117453 |
| authorships[0].institutions[1].ror | https://ror.org/02jzgtq86 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210117453 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Dana-Farber Cancer Institute |
| authorships[0].institutions[2].id | https://openalex.org/I136199984 |
| authorships[0].institutions[2].ror | https://ror.org/03vek6s52 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I136199984 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | Harvard University |
| authorships[0].institutions[3].id | https://openalex.org/I133738476 |
| authorships[0].institutions[3].ror | https://ror.org/03hamhx47 |
| authorships[0].institutions[3].type | education |
| authorships[0].institutions[3].lineage | https://openalex.org/I133738476 |
| authorships[0].institutions[3].country_code | US |
| authorships[0].institutions[3].display_name | University of Massachusetts Lowell |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mengying Shi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Medical Physics Program, Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, United States of America. Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America. |
| authorships[1].author.id | https://openalex.org/A5085461657 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4850-9183 |
| authorships[1].author.display_name | Marios Myronakis |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Marios Myronakis |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5020477182 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7616-945X |
| authorships[2].author.display_name | Matthew W. Jacobson |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Matthew Jacobson |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5107879130 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-2658-1775 |
| authorships[3].author.display_name | D. Ferguson |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dianne Ferguson |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5087533071 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8736-1591 |
| authorships[4].author.display_name | Christopher Williams |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Christopher Williams |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5004031626 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Mathias Lehmann |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mathias Lehmann |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5053397939 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Paul Baturin |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Paul Baturin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5059861639 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Pascal Huber |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Pascal Huber |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5072237655 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Rony Fueglistaller |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Rony Fueglistaller |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5006418529 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9130-8590 |
| authorships[9].author.display_name | Ingrid Valencia Lozano |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Ingrid Valencia Lozano |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5073032411 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-5594-5728 |
| authorships[10].author.display_name | Thomas C. Harris |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Thomas Harris |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5071425342 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Daniel Morf |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Daniel Morf |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5103527133 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Ross Berbeco |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Ross I Berbeco |
| authorships[12].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9100851 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GPU-accelerated Monte Carlo simulation of MV-CBCT |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W2350741829, https://openalex.org/W2530322880, https://openalex.org/W1596801655 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:9100851 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Phys Med Biol |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9100851 |
| primary_location.id | doi:10.1088/1361-6560/abaeba |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S20241394 |
| primary_location.source.issn | 0031-9155, 1361-6560 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0031-9155 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Physics in Medicine and Biology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Physics in Medicine & Biology |
| primary_location.landing_page_url | https://doi.org/10.1088/1361-6560/abaeba |
| publication_date | 2020-08-12 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2128158076, https://openalex.org/W2095734710, https://openalex.org/W2128881154, https://openalex.org/W6903366863, https://openalex.org/W2157400104, https://openalex.org/W2136759398, https://openalex.org/W2029927888, https://openalex.org/W2074442330, https://openalex.org/W2114674358, https://openalex.org/W2051175949, https://openalex.org/W2030682531, https://openalex.org/W2131617475, https://openalex.org/W2063023042, https://openalex.org/W2049242735, https://openalex.org/W2166163757, https://openalex.org/W2157812230, https://openalex.org/W3019174820, https://openalex.org/W1966146945, https://openalex.org/W2090684561, https://openalex.org/W2015475713, https://openalex.org/W2000836605, https://openalex.org/W2900441878, https://openalex.org/W2905669307, https://openalex.org/W2001632405, https://openalex.org/W2116085429, https://openalex.org/W2137920044, https://openalex.org/W2015290878, https://openalex.org/W2003327790, https://openalex.org/W2100927844, https://openalex.org/W1986217883, https://openalex.org/W1973865937, https://openalex.org/W2142723533, https://openalex.org/W1983416412, https://openalex.org/W2065416138, https://openalex.org/W1986256238, https://openalex.org/W2071632269, https://openalex.org/W2138237558, https://openalex.org/W2074343813, https://openalex.org/W2017390171, https://openalex.org/W2620282946, https://openalex.org/W2085188303, https://openalex.org/W1969878828, https://openalex.org/W2506695027, https://openalex.org/W2000076883, https://openalex.org/W2942715559, https://openalex.org/W3014997004, https://openalex.org/W1979399612, https://openalex.org/W1545614345, https://openalex.org/W2028695109, https://openalex.org/W2062031442, https://openalex.org/W3101694186, https://openalex.org/W2093312794, https://openalex.org/W2134619421, https://openalex.org/W3104118572, https://openalex.org/W2884642797, https://openalex.org/W3124937987 |
| referenced_works_count | 56 |
| abstract_inverted_index.6 | 155, 158 |
| abstract_inverted_index.A | 67, 88 |
| abstract_inverted_index.a | 42, 49, 72, 78, 107, 140, 204 |
| abstract_inverted_index.In | 37, 161 |
| abstract_inverted_index.MV | 75, 118, 159 |
| abstract_inverted_index.an | 145, 197 |
| abstract_inverted_index.at | 152 |
| abstract_inverted_index.by | 191 |
| abstract_inverted_index.in | 19, 59, 139, 180 |
| abstract_inverted_index.is | 5, 82, 95, 120 |
| abstract_inverted_index.of | 7, 31, 74, 103, 117, 182, 193 |
| abstract_inverted_index.to | 45 |
| abstract_inverted_index.we | 40, 55 |
| abstract_inverted_index.2.5 | 153, 205 |
| abstract_inverted_index.604 | 142 |
| abstract_inverted_index.AMD | 207 |
| abstract_inverted_index.GHz | 206 |
| abstract_inverted_index.GPU | 90, 201 |
| abstract_inverted_index.MCS | 32, 47 |
| abstract_inverted_index.MV, | 154, 156 |
| abstract_inverted_index.The | 110, 127, 186 |
| abstract_inverted_index.all | 162 |
| abstract_inverted_index.and | 16, 27, 54, 122, 137, 144, 157, 172, 177 |
| abstract_inverted_index.for | 13, 85, 92, 100, 134 |
| abstract_inverted_index.its | 34, 135 |
| abstract_inverted_index.new | 68 |
| abstract_inverted_index.one | 6 |
| abstract_inverted_index.run | 81 |
| abstract_inverted_index.the | 8, 23, 57, 98, 101, 115, 125, 164 |
| abstract_inverted_index.was | 132, 189 |
| abstract_inverted_index.(MV) | 61 |
| abstract_inverted_index.FFF. | 160 |
| abstract_inverted_index.V100 | 200 |
| abstract_inverted_index.beam | 150 |
| abstract_inverted_index.card | 202 |
| abstract_inverted_index.code | 91 |
| abstract_inverted_index.dose | 14 |
| abstract_inverted_index.from | 77 |
| abstract_inverted_index.high | 24 |
| abstract_inverted_index.into | 97, 124 |
| abstract_inverted_index.long | 28 |
| abstract_inverted_index.most | 9 |
| abstract_inverted_index.that | 70 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.time | 30 |
| abstract_inverted_index.unit | 52 |
| abstract_inverted_index.use. | 36 |
| abstract_inverted_index.with | 149, 175 |
| abstract_inverted_index.(MCS) | 4 |
| abstract_inverted_index.6380. | 210 |
| abstract_inverted_index.Carlo | 2 |
| abstract_inverted_index.Monte | 1 |
| abstract_inverted_index.Tesla | 199 |
| abstract_inverted_index.broad | 35 |
| abstract_inverted_index.great | 169 |
| abstract_inverted_index.image | 17, 184 |
| abstract_inverted_index.novel | 43 |
| abstract_inverted_index.terms | 181 |
| abstract_inverted_index.using | 48, 196 |
| abstract_inverted_index.which | 113 |
| abstract_inverted_index.(CBCT) | 65 |
| abstract_inverted_index.(GPU), | 53 |
| abstract_inverted_index.NVIDIA | 198 |
| abstract_inverted_index.cases, | 163 |
| abstract_inverted_index.limits | 33 |
| abstract_inverted_index.paper, | 39 |
| abstract_inverted_index.pelvis | 147 |
| abstract_inverted_index.photon | 93, 104 |
| abstract_inverted_index.series | 73 |
| abstract_inverted_index.single | 79 |
| abstract_inverted_index.tested | 133 |
| abstract_inverted_index.Catphan | 141 |
| abstract_inverted_index.MV-CBCT | 86, 187 |
| abstract_inverted_index.against | 203 |
| abstract_inverted_index.factors | 192 |
| abstract_inverted_index.graphic | 50 |
| abstract_inverted_index.images, | 119 |
| abstract_inverted_index.method, | 112 |
| abstract_inverted_index.methods | 12 |
| abstract_inverted_index.phantom | 108, 143, 148 |
| abstract_inverted_index.present | 41 |
| abstract_inverted_index.roughly | 194 |
| abstract_inverted_index.through | 106 |
| abstract_inverted_index.volume. | 109 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.FastEPID | 111 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.accuracy | 136, 171 |
| abstract_inverted_index.accurate | 10 |
| abstract_inverted_index.computed | 63 |
| abstract_inverted_index.designed | 83 |
| abstract_inverted_index.energies | 151 |
| abstract_inverted_index.modified | 121 |
| abstract_inverted_index.proposed | 128, 165 |
| abstract_inverted_index.strategy | 44, 131 |
| abstract_inverted_index.therapy. | 21 |
| abstract_inverted_index.CPU-based | 178 |
| abstract_inverted_index.GPU-based | 129, 166 |
| abstract_inverted_index.Processor | 209 |
| abstract_inverted_index.agreement | 174 |
| abstract_inverted_index.cone-beam | 62 |
| abstract_inverted_index.excellent | 173 |
| abstract_inverted_index.execution | 29 |
| abstract_inverted_index.formation | 18 |
| abstract_inverted_index.framework | 69, 99 |
| abstract_inverted_index.generates | 71 |
| abstract_inverted_index.radiation | 20 |
| abstract_inverted_index.transport | 105 |
| abstract_inverted_index.900–2300 | 195 |
| abstract_inverted_index.Opteron™ | 208 |
| abstract_inverted_index.accelerate | 46 |
| abstract_inverted_index.complexity | 26 |
| abstract_inverted_index.efficiency | 138 |
| abstract_inverted_index.framework. | 126 |
| abstract_inverted_index.integrated | 123 |
| abstract_inverted_index.processing | 51 |
| abstract_inverted_index.qualities. | 185 |
| abstract_inverted_index.simulation | 3, 80, 94, 102, 116, 130, 167, 170, 179, 188 |
| abstract_inverted_index.tomography | 64 |
| abstract_inverted_index.accelerated | 190 |
| abstract_inverted_index.accelerates | 114 |
| abstract_inverted_index.application | 58 |
| abstract_inverted_index.calculation | 15 |
| abstract_inverted_index.computation | 11 |
| abstract_inverted_index.demonstrate | 56 |
| abstract_inverted_index.measurement | 176 |
| abstract_inverted_index.projections | 76 |
| abstract_inverted_index.simulation. | 66 |
| abstract_inverted_index.Geant4-based | 89 |
| abstract_inverted_index.acquisition. | 87 |
| abstract_inverted_index.demonstrated | 168 |
| abstract_inverted_index.incorporated | 96 |
| abstract_inverted_index.mega-voltage | 60 |
| abstract_inverted_index.specifically | 84 |
| abstract_inverted_index.computational | 25 |
| abstract_inverted_index.reconstructed | 183 |
| abstract_inverted_index.anthropomorphic | 146 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 13 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.63484563 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |