Gradient-free training of neural ODEs for system identification and control using ensemble Kalman inversion Article Swipe
Ensemble Kalman inversion (EKI) is a sequential Monte Carlo method used to solve inverse problems within a Bayesian framework. Unlike backpropagation, EKI is a gradient-free optimization method that only necessitates the evaluation of artificial neural networks in forward passes. In this study, we examine the effectiveness of EKI in training neural ordinary differential equations (neural ODEs) for system identification and control tasks. To apply EKI to optimal control problems, we formulate inverse problems that incorporate a Tikhonov-type regularization term. Our numerical results demonstrate that EKI is an efficient method for training neural ODEs in system identification and optimal control problems, with runtime and quality of solutions that are competitive with commonly used gradient-based optimizers.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.07882
- https://arxiv.org/pdf/2307.07882
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4384644017
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4384644017Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.07882Digital Object Identifier
- Title
-
Gradient-free training of neural ODEs for system identification and control using ensemble Kalman inversionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-15Full publication date if available
- Authors
-
Lucas BöttcherList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.07882Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.07882Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.07882Direct OA link when available
- Concepts
-
Tikhonov regularization, Artificial neural network, Computer science, Backpropagation, Inversion (geology), Ode, Inverse problem, Regularization (linguistics), Optimal control, Ordinary differential equation, Gradient descent, Identification (biology), Mathematical optimization, Artificial intelligence, Mathematics, Applied mathematics, Differential equation, Biology, Paleontology, Botany, Structural basin, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4384644017 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.07882 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.07882 |
| ids.openalex | https://openalex.org/W4384644017 |
| fwci | |
| type | preprint |
| title | Gradient-free training of neural ODEs for system identification and control using ensemble Kalman inversion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9761000275611877 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T13487 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9731000065803528 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Statistical and numerical algorithms |
| topics[2].id | https://openalex.org/T12814 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9713000059127808 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Gaussian Processes and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C152442038 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6244668364524841 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2778212 |
| concepts[0].display_name | Tikhonov regularization |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.612634003162384 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5767661333084106 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C155032097 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5200121402740479 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q798503 |
| concepts[3].display_name | Backpropagation |
| concepts[4].id | https://openalex.org/C1893757 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4889613389968872 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3653001 |
| concepts[4].display_name | Inversion (geology) |
| concepts[5].id | https://openalex.org/C34862557 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48518282175064087 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q178985 |
| concepts[5].display_name | Ode |
| concepts[6].id | https://openalex.org/C135252773 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48189979791641235 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[6].display_name | Inverse problem |
| concepts[7].id | https://openalex.org/C2776135515 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48026275634765625 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[7].display_name | Regularization (linguistics) |
| concepts[8].id | https://openalex.org/C91575142 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47639885544776917 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1971426 |
| concepts[8].display_name | Optimal control |
| concepts[9].id | https://openalex.org/C51544822 |
| concepts[9].level | 3 |
| concepts[9].score | 0.44493263959884644 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q465274 |
| concepts[9].display_name | Ordinary differential equation |
| concepts[10].id | https://openalex.org/C153258448 |
| concepts[10].level | 3 |
| concepts[10].score | 0.41877561807632446 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[10].display_name | Gradient descent |
| concepts[11].id | https://openalex.org/C116834253 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4156450033187866 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[11].display_name | Identification (biology) |
| concepts[12].id | https://openalex.org/C126255220 |
| concepts[12].level | 1 |
| concepts[12].score | 0.36677467823028564 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[12].display_name | Mathematical optimization |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3279387652873993 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2886241376399994 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C28826006 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2238355278968811 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[15].display_name | Applied mathematics |
| concepts[16].id | https://openalex.org/C78045399 |
| concepts[16].level | 2 |
| concepts[16].score | 0.19584354758262634 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11214 |
| concepts[16].display_name | Differential equation |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C151730666 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[18].display_name | Paleontology |
| concepts[19].id | https://openalex.org/C59822182 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[19].display_name | Botany |
| concepts[20].id | https://openalex.org/C109007969 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q749565 |
| concepts[20].display_name | Structural basin |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/tikhonov-regularization |
| keywords[0].score | 0.6244668364524841 |
| keywords[0].display_name | Tikhonov regularization |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.612634003162384 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5767661333084106 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/backpropagation |
| keywords[3].score | 0.5200121402740479 |
| keywords[3].display_name | Backpropagation |
| keywords[4].id | https://openalex.org/keywords/inversion |
| keywords[4].score | 0.4889613389968872 |
| keywords[4].display_name | Inversion (geology) |
| keywords[5].id | https://openalex.org/keywords/ode |
| keywords[5].score | 0.48518282175064087 |
| keywords[5].display_name | Ode |
| keywords[6].id | https://openalex.org/keywords/inverse-problem |
| keywords[6].score | 0.48189979791641235 |
| keywords[6].display_name | Inverse problem |
| keywords[7].id | https://openalex.org/keywords/regularization |
| keywords[7].score | 0.48026275634765625 |
| keywords[7].display_name | Regularization (linguistics) |
| keywords[8].id | https://openalex.org/keywords/optimal-control |
| keywords[8].score | 0.47639885544776917 |
| keywords[8].display_name | Optimal control |
| keywords[9].id | https://openalex.org/keywords/ordinary-differential-equation |
| keywords[9].score | 0.44493263959884644 |
| keywords[9].display_name | Ordinary differential equation |
| keywords[10].id | https://openalex.org/keywords/gradient-descent |
| keywords[10].score | 0.41877561807632446 |
| keywords[10].display_name | Gradient descent |
| keywords[11].id | https://openalex.org/keywords/identification |
| keywords[11].score | 0.4156450033187866 |
| keywords[11].display_name | Identification (biology) |
| keywords[12].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[12].score | 0.36677467823028564 |
| keywords[12].display_name | Mathematical optimization |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.3279387652873993 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.2886241376399994 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/applied-mathematics |
| keywords[15].score | 0.2238355278968811 |
| keywords[15].display_name | Applied mathematics |
| keywords[16].id | https://openalex.org/keywords/differential-equation |
| keywords[16].score | 0.19584354758262634 |
| keywords[16].display_name | Differential equation |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.07882 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.07882 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.07882 |
| locations[1].id | doi:10.48550/arxiv.2307.07882 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.07882 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5088737112 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1700-1897 |
| authorships[0].author.display_name | Lucas Böttcher |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Böttcher, Lucas |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.07882 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-07-19T00:00:00 |
| display_name | Gradient-free training of neural ODEs for system identification and control using ensemble Kalman inversion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9761000275611877 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W2115605526, https://openalex.org/W3093883775, https://openalex.org/W1539246760, https://openalex.org/W2749105521, https://openalex.org/W2786746258, https://openalex.org/W4225893763, https://openalex.org/W2788727425, https://openalex.org/W2405196115, https://openalex.org/W2104893957, https://openalex.org/W2360343897 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.07882 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.07882 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.07882 |
| primary_location.id | pmh:oai:arXiv.org:2307.07882 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.07882 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.07882 |
| publication_date | 2023-07-15 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 16, 23, 75 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.To | 62 |
| abstract_inverted_index.an | 86 |
| abstract_inverted_index.in | 36, 48, 93 |
| abstract_inverted_index.is | 4, 22, 85 |
| abstract_inverted_index.of | 32, 46, 104 |
| abstract_inverted_index.to | 11, 65 |
| abstract_inverted_index.we | 42, 69 |
| abstract_inverted_index.EKI | 21, 47, 64, 84 |
| abstract_inverted_index.Our | 79 |
| abstract_inverted_index.and | 59, 96, 102 |
| abstract_inverted_index.are | 107 |
| abstract_inverted_index.for | 56, 89 |
| abstract_inverted_index.the | 30, 44 |
| abstract_inverted_index.ODEs | 92 |
| abstract_inverted_index.only | 28 |
| abstract_inverted_index.that | 27, 73, 83, 106 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.used | 10, 111 |
| abstract_inverted_index.with | 100, 109 |
| abstract_inverted_index.(EKI) | 3 |
| abstract_inverted_index.Carlo | 8 |
| abstract_inverted_index.Monte | 7 |
| abstract_inverted_index.ODEs) | 55 |
| abstract_inverted_index.apply | 63 |
| abstract_inverted_index.solve | 12 |
| abstract_inverted_index.term. | 78 |
| abstract_inverted_index.Kalman | 1 |
| abstract_inverted_index.Unlike | 19 |
| abstract_inverted_index.method | 9, 26, 88 |
| abstract_inverted_index.neural | 34, 50, 91 |
| abstract_inverted_index.study, | 41 |
| abstract_inverted_index.system | 57, 94 |
| abstract_inverted_index.tasks. | 61 |
| abstract_inverted_index.within | 15 |
| abstract_inverted_index.(neural | 54 |
| abstract_inverted_index.control | 60, 67, 98 |
| abstract_inverted_index.examine | 43 |
| abstract_inverted_index.forward | 37 |
| abstract_inverted_index.inverse | 13, 71 |
| abstract_inverted_index.optimal | 66, 97 |
| abstract_inverted_index.passes. | 38 |
| abstract_inverted_index.quality | 103 |
| abstract_inverted_index.results | 81 |
| abstract_inverted_index.runtime | 101 |
| abstract_inverted_index.Bayesian | 17 |
| abstract_inverted_index.Ensemble | 0 |
| abstract_inverted_index.commonly | 110 |
| abstract_inverted_index.networks | 35 |
| abstract_inverted_index.ordinary | 51 |
| abstract_inverted_index.problems | 14, 72 |
| abstract_inverted_index.training | 49, 90 |
| abstract_inverted_index.efficient | 87 |
| abstract_inverted_index.equations | 53 |
| abstract_inverted_index.formulate | 70 |
| abstract_inverted_index.inversion | 2 |
| abstract_inverted_index.numerical | 80 |
| abstract_inverted_index.problems, | 68, 99 |
| abstract_inverted_index.solutions | 105 |
| abstract_inverted_index.artificial | 33 |
| abstract_inverted_index.evaluation | 31 |
| abstract_inverted_index.framework. | 18 |
| abstract_inverted_index.sequential | 6 |
| abstract_inverted_index.competitive | 108 |
| abstract_inverted_index.demonstrate | 82 |
| abstract_inverted_index.incorporate | 74 |
| abstract_inverted_index.optimizers. | 113 |
| abstract_inverted_index.differential | 52 |
| abstract_inverted_index.necessitates | 29 |
| abstract_inverted_index.optimization | 25 |
| abstract_inverted_index.Tikhonov-type | 76 |
| abstract_inverted_index.effectiveness | 45 |
| abstract_inverted_index.gradient-free | 24 |
| abstract_inverted_index.gradient-based | 112 |
| abstract_inverted_index.identification | 58, 95 |
| abstract_inverted_index.regularization | 77 |
| abstract_inverted_index.backpropagation, | 20 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5088737112 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |