Gradient Obfuscation Gives a False Sense of Security in Federated Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2206.04055
Federated learning has been proposed as a privacy-preserving machine learning framework that enables multiple clients to collaborate without sharing raw data. However, client privacy protection is not guaranteed by design in this framework. Prior work has shown that the gradient sharing strategies in federated learning can be vulnerable to data reconstruction attacks. In practice, though, clients may not transmit raw gradients considering the high communication cost or due to privacy enhancement requirements. Empirical studies have demonstrated that gradient obfuscation, including intentional obfuscation via gradient noise injection and unintentional obfuscation via gradient compression, can provide more privacy protection against reconstruction attacks. In this work, we present a new data reconstruction attack framework targeting the image classification task in federated learning. We show that commonly adopted gradient postprocessing procedures, such as gradient quantization, gradient sparsification, and gradient perturbation, may give a false sense of security in federated learning. Contrary to prior studies, we argue that privacy enhancement should not be treated as a byproduct of gradient compression. Additionally, we design a new method under the proposed framework to reconstruct the image at the semantic level. We quantify the semantic privacy leakage and compare with conventional based on image similarity scores. Our comparisons challenge the image data leakage evaluation schemes in the literature. The results emphasize the importance of revisiting and redesigning the privacy protection mechanisms for client data in existing federated learning algorithms.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2206.04055
- https://arxiv.org/pdf/2206.04055
- OA Status
- green
- Cited By
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281609047
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281609047Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2206.04055Digital Object Identifier
- Title
-
Gradient Obfuscation Gives a False Sense of Security in Federated LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-08Full publication date if available
- Authors
-
Kai Yue, Richeng Jin, Chau-Wai Wong, Dror Baron, Huaiyu DaiList of authors in order
- Landing page
-
https://arxiv.org/abs/2206.04055Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2206.04055Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2206.04055Direct OA link when available
- Concepts
-
Computer science, Obfuscation, Quantization (signal processing), Data sharing, Machine learning, Artificial intelligence, Differential privacy, Information privacy, Raw data, Computer security, Data mining, Algorithm, Alternative medicine, Pathology, Medicine, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 5, 2023: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281609047 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2206.04055 |
| ids.doi | https://doi.org/10.48550/arxiv.2206.04055 |
| ids.openalex | https://openalex.org/W4281609047 |
| fwci | |
| type | preprint |
| title | Gradient Obfuscation Gives a False Sense of Security in Federated Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.989300012588501 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9276000261306763 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.82398521900177 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C40305131 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8022225499153137 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2616305 |
| concepts[1].display_name | Obfuscation |
| concepts[2].id | https://openalex.org/C28855332 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5138683319091797 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q198099 |
| concepts[2].display_name | Quantization (signal processing) |
| concepts[3].id | https://openalex.org/C2779965156 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4971659481525421 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5227350 |
| concepts[3].display_name | Data sharing |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4895985722541809 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.48934024572372437 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C23130292 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4387577176094055 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5275358 |
| concepts[6].display_name | Differential privacy |
| concepts[7].id | https://openalex.org/C123201435 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4381354749202728 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q456632 |
| concepts[7].display_name | Information privacy |
| concepts[8].id | https://openalex.org/C132964779 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4189894199371338 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2110223 |
| concepts[8].display_name | Raw data |
| concepts[9].id | https://openalex.org/C38652104 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32885414361953735 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[9].display_name | Computer security |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3267812728881836 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.21124324202537537 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C204787440 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q188504 |
| concepts[12].display_name | Alternative medicine |
| concepts[13].id | https://openalex.org/C142724271 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[13].display_name | Pathology |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.82398521900177 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/obfuscation |
| keywords[1].score | 0.8022225499153137 |
| keywords[1].display_name | Obfuscation |
| keywords[2].id | https://openalex.org/keywords/quantization |
| keywords[2].score | 0.5138683319091797 |
| keywords[2].display_name | Quantization (signal processing) |
| keywords[3].id | https://openalex.org/keywords/data-sharing |
| keywords[3].score | 0.4971659481525421 |
| keywords[3].display_name | Data sharing |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.4895985722541809 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.48934024572372437 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/differential-privacy |
| keywords[6].score | 0.4387577176094055 |
| keywords[6].display_name | Differential privacy |
| keywords[7].id | https://openalex.org/keywords/information-privacy |
| keywords[7].score | 0.4381354749202728 |
| keywords[7].display_name | Information privacy |
| keywords[8].id | https://openalex.org/keywords/raw-data |
| keywords[8].score | 0.4189894199371338 |
| keywords[8].display_name | Raw data |
| keywords[9].id | https://openalex.org/keywords/computer-security |
| keywords[9].score | 0.32885414361953735 |
| keywords[9].display_name | Computer security |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3267812728881836 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.21124324202537537 |
| keywords[11].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2206.04055 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2206.04055 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2206.04055 |
| locations[1].id | doi:10.48550/arxiv.2206.04055 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2206.04055 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100313417 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-4147-062X |
| authorships[0].author.display_name | Kai Yue |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yue, Kai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5070646892 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1480-585X |
| authorships[1].author.display_name | Richeng Jin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jin, Richeng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014799225 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3873-7708 |
| authorships[2].author.display_name | Chau-Wai Wong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wong, Chau-Wai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5037316256 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6371-8496 |
| authorships[3].author.display_name | Dror Baron |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Baron, Dror |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5027155270 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0078-4891 |
| authorships[4].author.display_name | Huaiyu Dai |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Dai, Huaiyu |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2206.04055 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Gradient Obfuscation Gives a False Sense of Security in Federated Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4224216661, https://openalex.org/W3210347767, https://openalex.org/W2066014542, https://openalex.org/W67940504, https://openalex.org/W2024170198, https://openalex.org/W2152144666, https://openalex.org/W4312041519, https://openalex.org/W1968399615, https://openalex.org/W1992241391, https://openalex.org/W2047864778 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2206.04055 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2206.04055 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2206.04055 |
| primary_location.id | pmh:oai:arXiv.org:2206.04055 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2206.04055 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2206.04055 |
| publication_date | 2022-06-08 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 105, 138, 160, 168 |
| abstract_inverted_index.In | 52, 100 |
| abstract_inverted_index.We | 119, 183 |
| abstract_inverted_index.as | 5, 128, 159 |
| abstract_inverted_index.at | 179 |
| abstract_inverted_index.be | 46, 157 |
| abstract_inverted_index.by | 28 |
| abstract_inverted_index.in | 30, 42, 116, 143, 207, 226 |
| abstract_inverted_index.is | 25 |
| abstract_inverted_index.of | 141, 162, 215 |
| abstract_inverted_index.on | 194 |
| abstract_inverted_index.or | 66 |
| abstract_inverted_index.to | 15, 48, 68, 147, 175 |
| abstract_inverted_index.we | 103, 150, 166 |
| abstract_inverted_index.Our | 198 |
| abstract_inverted_index.The | 210 |
| abstract_inverted_index.and | 86, 133, 189, 217 |
| abstract_inverted_index.can | 45, 92 |
| abstract_inverted_index.due | 67 |
| abstract_inverted_index.for | 223 |
| abstract_inverted_index.has | 2, 35 |
| abstract_inverted_index.may | 56, 136 |
| abstract_inverted_index.new | 106, 169 |
| abstract_inverted_index.not | 26, 57, 156 |
| abstract_inverted_index.raw | 19, 59 |
| abstract_inverted_index.the | 38, 62, 112, 172, 177, 180, 185, 201, 208, 213, 219 |
| abstract_inverted_index.via | 82, 89 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.cost | 65 |
| abstract_inverted_index.data | 49, 107, 203, 225 |
| abstract_inverted_index.give | 137 |
| abstract_inverted_index.have | 74 |
| abstract_inverted_index.high | 63 |
| abstract_inverted_index.more | 94 |
| abstract_inverted_index.show | 120 |
| abstract_inverted_index.such | 127 |
| abstract_inverted_index.task | 115 |
| abstract_inverted_index.that | 11, 37, 76, 121, 152 |
| abstract_inverted_index.this | 31, 101 |
| abstract_inverted_index.with | 191 |
| abstract_inverted_index.work | 34 |
| abstract_inverted_index.Prior | 33 |
| abstract_inverted_index.argue | 151 |
| abstract_inverted_index.based | 193 |
| abstract_inverted_index.data. | 20 |
| abstract_inverted_index.false | 139 |
| abstract_inverted_index.image | 113, 178, 195, 202 |
| abstract_inverted_index.noise | 84 |
| abstract_inverted_index.prior | 148 |
| abstract_inverted_index.sense | 140 |
| abstract_inverted_index.shown | 36 |
| abstract_inverted_index.under | 171 |
| abstract_inverted_index.work, | 102 |
| abstract_inverted_index.attack | 109 |
| abstract_inverted_index.client | 22, 224 |
| abstract_inverted_index.design | 29, 167 |
| abstract_inverted_index.level. | 182 |
| abstract_inverted_index.method | 170 |
| abstract_inverted_index.should | 155 |
| abstract_inverted_index.adopted | 123 |
| abstract_inverted_index.against | 97 |
| abstract_inverted_index.clients | 14, 55 |
| abstract_inverted_index.compare | 190 |
| abstract_inverted_index.enables | 12 |
| abstract_inverted_index.leakage | 188, 204 |
| abstract_inverted_index.machine | 8 |
| abstract_inverted_index.present | 104 |
| abstract_inverted_index.privacy | 23, 69, 95, 153, 187, 220 |
| abstract_inverted_index.provide | 93 |
| abstract_inverted_index.results | 211 |
| abstract_inverted_index.schemes | 206 |
| abstract_inverted_index.scores. | 197 |
| abstract_inverted_index.sharing | 18, 40 |
| abstract_inverted_index.studies | 73 |
| abstract_inverted_index.though, | 54 |
| abstract_inverted_index.treated | 158 |
| abstract_inverted_index.without | 17 |
| abstract_inverted_index.Contrary | 146 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.attacks. | 51, 99 |
| abstract_inverted_index.commonly | 122 |
| abstract_inverted_index.existing | 227 |
| abstract_inverted_index.gradient | 39, 77, 83, 90, 124, 129, 131, 134, 163 |
| abstract_inverted_index.learning | 1, 9, 44, 229 |
| abstract_inverted_index.multiple | 13 |
| abstract_inverted_index.proposed | 4, 173 |
| abstract_inverted_index.quantify | 184 |
| abstract_inverted_index.security | 142 |
| abstract_inverted_index.semantic | 181, 186 |
| abstract_inverted_index.studies, | 149 |
| abstract_inverted_index.transmit | 58 |
| abstract_inverted_index.Empirical | 72 |
| abstract_inverted_index.Federated | 0 |
| abstract_inverted_index.byproduct | 161 |
| abstract_inverted_index.challenge | 200 |
| abstract_inverted_index.emphasize | 212 |
| abstract_inverted_index.federated | 43, 117, 144, 228 |
| abstract_inverted_index.framework | 10, 110, 174 |
| abstract_inverted_index.gradients | 60 |
| abstract_inverted_index.including | 79 |
| abstract_inverted_index.injection | 85 |
| abstract_inverted_index.learning. | 118, 145 |
| abstract_inverted_index.practice, | 53 |
| abstract_inverted_index.targeting | 111 |
| abstract_inverted_index.evaluation | 205 |
| abstract_inverted_index.framework. | 32 |
| abstract_inverted_index.guaranteed | 27 |
| abstract_inverted_index.importance | 214 |
| abstract_inverted_index.mechanisms | 222 |
| abstract_inverted_index.protection | 24, 96, 221 |
| abstract_inverted_index.revisiting | 216 |
| abstract_inverted_index.similarity | 196 |
| abstract_inverted_index.strategies | 41 |
| abstract_inverted_index.vulnerable | 47 |
| abstract_inverted_index.algorithms. | 230 |
| abstract_inverted_index.collaborate | 16 |
| abstract_inverted_index.comparisons | 199 |
| abstract_inverted_index.considering | 61 |
| abstract_inverted_index.enhancement | 70, 154 |
| abstract_inverted_index.intentional | 80 |
| abstract_inverted_index.literature. | 209 |
| abstract_inverted_index.obfuscation | 81, 88 |
| abstract_inverted_index.procedures, | 126 |
| abstract_inverted_index.reconstruct | 176 |
| abstract_inverted_index.redesigning | 218 |
| abstract_inverted_index.compression, | 91 |
| abstract_inverted_index.compression. | 164 |
| abstract_inverted_index.conventional | 192 |
| abstract_inverted_index.demonstrated | 75 |
| abstract_inverted_index.obfuscation, | 78 |
| abstract_inverted_index.Additionally, | 165 |
| abstract_inverted_index.communication | 64 |
| abstract_inverted_index.perturbation, | 135 |
| abstract_inverted_index.quantization, | 130 |
| abstract_inverted_index.requirements. | 71 |
| abstract_inverted_index.unintentional | 87 |
| abstract_inverted_index.classification | 114 |
| abstract_inverted_index.postprocessing | 125 |
| abstract_inverted_index.reconstruction | 50, 98, 108 |
| abstract_inverted_index.sparsification, | 132 |
| abstract_inverted_index.privacy-preserving | 7 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |