Graph-based Dynamic Word Embeddings Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2022/594
As time goes by, language evolves with word semantics changing. Unfortunately, traditional word embedding methods neglect the evolution of language and assume that word representations are static. Although contextualized word embedding models can capture the diverse representations of polysemous words, they ignore temporal information as well. To tackle the aforementioned challenges, we propose a graph-based dynamic word embedding (GDWE) model, which focuses on capturing the semantic drift of words continually. We introduce word-level knowledge graphs (WKGs) to store short-term and long-term knowledge. WKGs can provide rich structural information as supplement of lexical information, which help enhance the word embedding quality and capture semantic drift quickly. Theoretical analysis and extensive experiments validate the effectiveness of our GDWE on dynamic word embedding learning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2022/594
- https://www.ijcai.org/proceedings/2022/0594.pdf
- OA Status
- bronze
- Cited By
- 1
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3217011468
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3217011468Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2022/594Digital Object Identifier
- Title
-
Graph-based Dynamic Word EmbeddingsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-01Full publication date if available
- Authors
-
Yuyin Lu, Xin Cheng, Ziran Liang, Yanghui RaoList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2022/594Publisher landing page
- PDF URL
-
https://www.ijcai.org/proceedings/2022/0594.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.ijcai.org/proceedings/2022/0594.pdfDirect OA link when available
- Concepts
-
Computer science, Word (group theory), Embedding, Word embedding, Natural language processing, Artificial intelligence, Semantics (computer science), Graph, Knowledge graph, Theoretical computer science, Linguistics, Programming language, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3217011468 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2022/594 |
| ids.doi | https://doi.org/10.24963/ijcai.2022/594 |
| ids.mag | 3217011468 |
| ids.openalex | https://openalex.org/W3217011468 |
| fwci | 0.11755504 |
| type | article |
| title | Graph-based Dynamic Word Embeddings |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 4288 |
| biblio.first_page | 4280 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T12090 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3316 |
| topics[2].subfield.display_name | Cultural Studies |
| topics[2].display_name | Language and cultural evolution |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8070998191833496 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C90805587 |
| concepts[1].level | 2 |
| concepts[1].score | 0.734667181968689 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[1].display_name | Word (group theory) |
| concepts[2].id | https://openalex.org/C41608201 |
| concepts[2].level | 2 |
| concepts[2].score | 0.727590799331665 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[2].display_name | Embedding |
| concepts[3].id | https://openalex.org/C2777462759 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6872697472572327 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q18395344 |
| concepts[3].display_name | Word embedding |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6496962308883667 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.6111465096473694 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C184337299 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5837494134902954 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[6].display_name | Semantics (computer science) |
| concepts[7].id | https://openalex.org/C132525143 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5357789993286133 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[7].display_name | Graph |
| concepts[8].id | https://openalex.org/C2987255567 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4687854051589966 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33002955 |
| concepts[8].display_name | Knowledge graph |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.23457270860671997 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C41895202 |
| concepts[10].level | 1 |
| concepts[10].score | 0.15356528759002686 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[10].display_name | Linguistics |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09584423899650574 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8070998191833496 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/word |
| keywords[1].score | 0.734667181968689 |
| keywords[1].display_name | Word (group theory) |
| keywords[2].id | https://openalex.org/keywords/embedding |
| keywords[2].score | 0.727590799331665 |
| keywords[2].display_name | Embedding |
| keywords[3].id | https://openalex.org/keywords/word-embedding |
| keywords[3].score | 0.6872697472572327 |
| keywords[3].display_name | Word embedding |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.6496962308883667 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.6111465096473694 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/semantics |
| keywords[6].score | 0.5837494134902954 |
| keywords[6].display_name | Semantics (computer science) |
| keywords[7].id | https://openalex.org/keywords/graph |
| keywords[7].score | 0.5357789993286133 |
| keywords[7].display_name | Graph |
| keywords[8].id | https://openalex.org/keywords/knowledge-graph |
| keywords[8].score | 0.4687854051589966 |
| keywords[8].display_name | Knowledge graph |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.23457270860671997 |
| keywords[9].display_name | Theoretical computer science |
| keywords[10].id | https://openalex.org/keywords/linguistics |
| keywords[10].score | 0.15356528759002686 |
| keywords[10].display_name | Linguistics |
| keywords[11].id | https://openalex.org/keywords/programming-language |
| keywords[11].score | 0.09584423899650574 |
| keywords[11].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2022/594 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4363608755 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://www.ijcai.org/proceedings/2022/0594.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2022/594 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5049632474 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yuyin Lu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I157773358 |
| authorships[0].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sun Yat-sen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuyin Lu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[1].author.id | https://openalex.org/A5101721770 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6590-900X |
| authorships[1].author.display_name | Xin Cheng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China |
| authorships[1].institutions[0].id | https://openalex.org/I183067930 |
| authorships[1].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xin Cheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China |
| authorships[2].author.id | https://openalex.org/A5027607132 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1483-5810 |
| authorships[2].author.display_name | Ziran Liang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I157773358 |
| authorships[2].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sun Yat-sen University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ziran Liang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[3].author.id | https://openalex.org/A5058291454 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1610-9599 |
| authorships[3].author.display_name | Yanghui Rao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I157773358 |
| authorships[3].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sun Yat-sen University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yanghui Rao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijcai.org/proceedings/2022/0594.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Graph-based Dynamic Word Embeddings |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2604454537, https://openalex.org/W2808284704, https://openalex.org/W2897702399, https://openalex.org/W4206028705, https://openalex.org/W2757431232, https://openalex.org/W947140380, https://openalex.org/W2954554213, https://openalex.org/W2251363251, https://openalex.org/W4286432911, https://openalex.org/W4206547516 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.24963/ijcai.2022/594 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4363608755 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ijcai.org/proceedings/2022/0594.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.24963/ijcai.2022/594 |
| primary_location.id | doi:10.24963/ijcai.2022/594 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4363608755 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://www.ijcai.org/proceedings/2022/0594.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2022/594 |
| publication_date | 2022-07-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3115228514, https://openalex.org/W2951004968, https://openalex.org/W2125031621, https://openalex.org/W2963586458, https://openalex.org/W1993378086, https://openalex.org/W3175236579, https://openalex.org/W2950541952, https://openalex.org/W2950883770, https://openalex.org/W4287111051, https://openalex.org/W3027879771, https://openalex.org/W3021480884, https://openalex.org/W2966574105, https://openalex.org/W3015883388, https://openalex.org/W2547875792, https://openalex.org/W2953046278, https://openalex.org/W2738734060, https://openalex.org/W4287332702, https://openalex.org/W4294170691, https://openalex.org/W2155482025, https://openalex.org/W2593864460, https://openalex.org/W3099944244, https://openalex.org/W3005926832, https://openalex.org/W3115844705, https://openalex.org/W2962963628, https://openalex.org/W2913755428, https://openalex.org/W2799188490, https://openalex.org/W3106274079, https://openalex.org/W2963341956, https://openalex.org/W2252136820, https://openalex.org/W2952165242, https://openalex.org/W1801866228, https://openalex.org/W1570098300, https://openalex.org/W3101767658, https://openalex.org/W3022600224, https://openalex.org/W2891732163, https://openalex.org/W3205336478, https://openalex.org/W2470673105, https://openalex.org/W2912924812, https://openalex.org/W3104123491, https://openalex.org/W2102343050, https://openalex.org/W3035639219, https://openalex.org/W3099814951, https://openalex.org/W2888302696, https://openalex.org/W2987931181, https://openalex.org/W2210838531, https://openalex.org/W4212964822, https://openalex.org/W2963799213, https://openalex.org/W3007672467, https://openalex.org/W2896457183, https://openalex.org/W1614298861, https://openalex.org/W2963780471, https://openalex.org/W3034624105, https://openalex.org/W2060717313, https://openalex.org/W2612431505, https://openalex.org/W4297792210 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 53 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.We | 70 |
| abstract_inverted_index.as | 44, 88 |
| abstract_inverted_index.of | 18, 37, 67, 90, 113 |
| abstract_inverted_index.on | 62, 116 |
| abstract_inverted_index.to | 76 |
| abstract_inverted_index.we | 51 |
| abstract_inverted_index.and | 20, 79, 100, 107 |
| abstract_inverted_index.are | 25 |
| abstract_inverted_index.by, | 3 |
| abstract_inverted_index.can | 32, 83 |
| abstract_inverted_index.our | 114 |
| abstract_inverted_index.the | 16, 34, 48, 64, 96, 111 |
| abstract_inverted_index.GDWE | 115 |
| abstract_inverted_index.WKGs | 82 |
| abstract_inverted_index.goes | 2 |
| abstract_inverted_index.help | 94 |
| abstract_inverted_index.rich | 85 |
| abstract_inverted_index.that | 22 |
| abstract_inverted_index.they | 40 |
| abstract_inverted_index.time | 1 |
| abstract_inverted_index.with | 6 |
| abstract_inverted_index.word | 7, 12, 23, 29, 56, 97, 118 |
| abstract_inverted_index.drift | 66, 103 |
| abstract_inverted_index.store | 77 |
| abstract_inverted_index.well. | 45 |
| abstract_inverted_index.which | 60, 93 |
| abstract_inverted_index.words | 68 |
| abstract_inverted_index.(GDWE) | 58 |
| abstract_inverted_index.(WKGs) | 75 |
| abstract_inverted_index.assume | 21 |
| abstract_inverted_index.graphs | 74 |
| abstract_inverted_index.ignore | 41 |
| abstract_inverted_index.model, | 59 |
| abstract_inverted_index.models | 31 |
| abstract_inverted_index.tackle | 47 |
| abstract_inverted_index.words, | 39 |
| abstract_inverted_index.capture | 33, 101 |
| abstract_inverted_index.diverse | 35 |
| abstract_inverted_index.dynamic | 55, 117 |
| abstract_inverted_index.enhance | 95 |
| abstract_inverted_index.evolves | 5 |
| abstract_inverted_index.focuses | 61 |
| abstract_inverted_index.lexical | 91 |
| abstract_inverted_index.methods | 14 |
| abstract_inverted_index.neglect | 15 |
| abstract_inverted_index.propose | 52 |
| abstract_inverted_index.provide | 84 |
| abstract_inverted_index.quality | 99 |
| abstract_inverted_index.static. | 26 |
| abstract_inverted_index.Although | 27 |
| abstract_inverted_index.analysis | 106 |
| abstract_inverted_index.language | 4, 19 |
| abstract_inverted_index.quickly. | 104 |
| abstract_inverted_index.semantic | 65, 102 |
| abstract_inverted_index.temporal | 42 |
| abstract_inverted_index.validate | 110 |
| abstract_inverted_index.capturing | 63 |
| abstract_inverted_index.changing. | 9 |
| abstract_inverted_index.embedding | 13, 30, 57, 98, 119 |
| abstract_inverted_index.evolution | 17 |
| abstract_inverted_index.extensive | 108 |
| abstract_inverted_index.introduce | 71 |
| abstract_inverted_index.knowledge | 73 |
| abstract_inverted_index.learning. | 120 |
| abstract_inverted_index.long-term | 80 |
| abstract_inverted_index.semantics | 8 |
| abstract_inverted_index.knowledge. | 81 |
| abstract_inverted_index.polysemous | 38 |
| abstract_inverted_index.short-term | 78 |
| abstract_inverted_index.structural | 86 |
| abstract_inverted_index.supplement | 89 |
| abstract_inverted_index.word-level | 72 |
| abstract_inverted_index.Theoretical | 105 |
| abstract_inverted_index.challenges, | 50 |
| abstract_inverted_index.experiments | 109 |
| abstract_inverted_index.graph-based | 54 |
| abstract_inverted_index.information | 43, 87 |
| abstract_inverted_index.traditional | 11 |
| abstract_inverted_index.continually. | 69 |
| abstract_inverted_index.information, | 92 |
| abstract_inverted_index.effectiveness | 112 |
| abstract_inverted_index.Unfortunately, | 10 |
| abstract_inverted_index.aforementioned | 49 |
| abstract_inverted_index.contextualized | 28 |
| abstract_inverted_index.representations | 24, 36 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.22717473 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |