Graph Embedding Dynamic Feature-based Supervised Contrastive Learning of Transient Stability for Changing Power Grid Topologies Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.00537
Accurate online transient stability prediction is critical for ensuring power system stability when facing disturbances. While traditional transient stablity analysis replies on the time domain simulations can not be quickly adapted to the power grid toplogy change. In order to vectorize high-dimensional power grid topological structure information into low-dimensional node-based graph embedding streaming data, graph embedding dynamic feature (GEDF) has been proposed. The transient stability GEDF-based supervised contrastive learning (GEDF-SCL) model uses supervised contrastive learning to predict transient stability with GEDFs, considering power grid topology information. To evaluate the performance of the proposed GEDF-SCL model, power grids of varying topologies were generated based on the IEEE 39-bus system model. Transient operational data was obtained by simulating N-1 and N-$\bm{m}$-1 contingencies on these generated power system topologies. Test result demonstrated that the GEDF-SCL model can achieve high accuracy in transient stability prediction and adapt well to changing power grid topologies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.00537
- https://arxiv.org/pdf/2308.00537
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385966126
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385966126Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.00537Digital Object Identifier
- Title
-
Graph Embedding Dynamic Feature-based Supervised Contrastive Learning of Transient Stability for Changing Power Grid TopologiesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-01Full publication date if available
- Authors
-
Zijian Lv, Xin Chen, Zijian FengList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.00537Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.00537Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.00537Direct OA link when available
- Concepts
-
Network topology, Transient (computer programming), Computer science, Grid, Topology (electrical circuits), Stability (learning theory), Embedding, Electric power system, Graph, Power (physics), Artificial intelligence, Machine learning, Theoretical computer science, Engineering, Mathematics, Physics, Electrical engineering, Geometry, Quantum mechanics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385966126 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.00537 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.00537 |
| ids.openalex | https://openalex.org/W4385966126 |
| fwci | |
| type | preprint |
| title | Graph Embedding Dynamic Feature-based Supervised Contrastive Learning of Transient Stability for Changing Power Grid Topologies |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10305 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Power System Optimization and Stability |
| topics[1].id | https://openalex.org/T10454 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Optimal Power Flow Distribution |
| topics[2].id | https://openalex.org/T12451 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Smart Grid and Power Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C199845137 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7395785450935364 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q145490 |
| concepts[0].display_name | Network topology |
| concepts[1].id | https://openalex.org/C2780799671 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7132059335708618 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17087362 |
| concepts[1].display_name | Transient (computer programming) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6701975464820862 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C187691185 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5921275019645691 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2020720 |
| concepts[3].display_name | Grid |
| concepts[4].id | https://openalex.org/C184720557 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5653955340385437 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7825049 |
| concepts[4].display_name | Topology (electrical circuits) |
| concepts[5].id | https://openalex.org/C112972136 |
| concepts[5].level | 2 |
| concepts[5].score | 0.531656801700592 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[5].display_name | Stability (learning theory) |
| concepts[6].id | https://openalex.org/C41608201 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5146056413650513 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[6].display_name | Embedding |
| concepts[7].id | https://openalex.org/C89227174 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4850589334964752 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2388981 |
| concepts[7].display_name | Electric power system |
| concepts[8].id | https://openalex.org/C132525143 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4631155729293823 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[8].display_name | Graph |
| concepts[9].id | https://openalex.org/C163258240 |
| concepts[9].level | 2 |
| concepts[9].score | 0.33997637033462524 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[9].display_name | Power (physics) |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.2745486795902252 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18769648671150208 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C80444323 |
| concepts[12].level | 1 |
| concepts[12].score | 0.17711874842643738 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[12].display_name | Theoretical computer science |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.15976086258888245 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1436157524585724 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08685058355331421 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C119599485 |
| concepts[16].level | 1 |
| concepts[16].score | 0.057209163904190063 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[16].display_name | Electrical engineering |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C111919701 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[19].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/network-topology |
| keywords[0].score | 0.7395785450935364 |
| keywords[0].display_name | Network topology |
| keywords[1].id | https://openalex.org/keywords/transient |
| keywords[1].score | 0.7132059335708618 |
| keywords[1].display_name | Transient (computer programming) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6701975464820862 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/grid |
| keywords[3].score | 0.5921275019645691 |
| keywords[3].display_name | Grid |
| keywords[4].id | https://openalex.org/keywords/topology |
| keywords[4].score | 0.5653955340385437 |
| keywords[4].display_name | Topology (electrical circuits) |
| keywords[5].id | https://openalex.org/keywords/stability |
| keywords[5].score | 0.531656801700592 |
| keywords[5].display_name | Stability (learning theory) |
| keywords[6].id | https://openalex.org/keywords/embedding |
| keywords[6].score | 0.5146056413650513 |
| keywords[6].display_name | Embedding |
| keywords[7].id | https://openalex.org/keywords/electric-power-system |
| keywords[7].score | 0.4850589334964752 |
| keywords[7].display_name | Electric power system |
| keywords[8].id | https://openalex.org/keywords/graph |
| keywords[8].score | 0.4631155729293823 |
| keywords[8].display_name | Graph |
| keywords[9].id | https://openalex.org/keywords/power |
| keywords[9].score | 0.33997637033462524 |
| keywords[9].display_name | Power (physics) |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.2745486795902252 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.18769648671150208 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[12].score | 0.17711874842643738 |
| keywords[12].display_name | Theoretical computer science |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.15976086258888245 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.1436157524585724 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.08685058355331421 |
| keywords[15].display_name | Physics |
| keywords[16].id | https://openalex.org/keywords/electrical-engineering |
| keywords[16].score | 0.057209163904190063 |
| keywords[16].display_name | Electrical engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.00537 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.00537 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.00537 |
| locations[1].id | doi:10.48550/arxiv.2308.00537 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.00537 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5113976102 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zijian Lv |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lv, Zijian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100363117 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1990-2058 |
| authorships[1].author.display_name | Xin Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Xin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100301096 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-7317-2995 |
| authorships[2].author.display_name | Zijian Feng |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Feng, Zijian |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.00537 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-08-18T00:00:00 |
| display_name | Graph Embedding Dynamic Feature-based Supervised Contrastive Learning of Transient Stability for Changing Power Grid Topologies |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10305 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Power System Optimization and Stability |
| related_works | https://openalex.org/W2081900870, https://openalex.org/W2086397253, https://openalex.org/W2133122801, https://openalex.org/W2386042020, https://openalex.org/W2171916062, https://openalex.org/W1514891764, https://openalex.org/W4247603094, https://openalex.org/W2120796965, https://openalex.org/W3023796992, https://openalex.org/W2377193240 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.00537 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.00537 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.00537 |
| primary_location.id | pmh:oai:arXiv.org:2308.00537 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.00537 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.00537 |
| publication_date | 2023-08-01 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.In | 37 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.be | 28 |
| abstract_inverted_index.by | 114 |
| abstract_inverted_index.in | 137 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 90, 97 |
| abstract_inverted_index.on | 21, 103, 120 |
| abstract_inverted_index.to | 31, 39, 75, 144 |
| abstract_inverted_index.N-1 | 116 |
| abstract_inverted_index.The | 62 |
| abstract_inverted_index.and | 117, 141 |
| abstract_inverted_index.can | 26, 133 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.has | 59 |
| abstract_inverted_index.not | 27 |
| abstract_inverted_index.the | 22, 32, 88, 91, 104, 130 |
| abstract_inverted_index.was | 112 |
| abstract_inverted_index.IEEE | 105 |
| abstract_inverted_index.Test | 126 |
| abstract_inverted_index.been | 60 |
| abstract_inverted_index.data | 111 |
| abstract_inverted_index.grid | 34, 43, 83, 147 |
| abstract_inverted_index.high | 135 |
| abstract_inverted_index.into | 47 |
| abstract_inverted_index.that | 129 |
| abstract_inverted_index.time | 23 |
| abstract_inverted_index.uses | 71 |
| abstract_inverted_index.well | 143 |
| abstract_inverted_index.were | 100 |
| abstract_inverted_index.when | 12 |
| abstract_inverted_index.with | 79 |
| abstract_inverted_index.While | 15 |
| abstract_inverted_index.adapt | 142 |
| abstract_inverted_index.based | 102 |
| abstract_inverted_index.data, | 53 |
| abstract_inverted_index.graph | 50, 54 |
| abstract_inverted_index.grids | 96 |
| abstract_inverted_index.model | 70, 132 |
| abstract_inverted_index.order | 38 |
| abstract_inverted_index.power | 9, 33, 42, 82, 95, 123, 146 |
| abstract_inverted_index.these | 121 |
| abstract_inverted_index.(GEDF) | 58 |
| abstract_inverted_index.39-bus | 106 |
| abstract_inverted_index.GEDFs, | 80 |
| abstract_inverted_index.domain | 24 |
| abstract_inverted_index.facing | 13 |
| abstract_inverted_index.model, | 94 |
| abstract_inverted_index.model. | 108 |
| abstract_inverted_index.online | 1 |
| abstract_inverted_index.result | 127 |
| abstract_inverted_index.system | 10, 107, 124 |
| abstract_inverted_index.achieve | 134 |
| abstract_inverted_index.adapted | 30 |
| abstract_inverted_index.change. | 36 |
| abstract_inverted_index.dynamic | 56 |
| abstract_inverted_index.feature | 57 |
| abstract_inverted_index.predict | 76 |
| abstract_inverted_index.quickly | 29 |
| abstract_inverted_index.replies | 20 |
| abstract_inverted_index.toplogy | 35 |
| abstract_inverted_index.varying | 98 |
| abstract_inverted_index.Accurate | 0 |
| abstract_inverted_index.GEDF-SCL | 93, 131 |
| abstract_inverted_index.accuracy | 136 |
| abstract_inverted_index.analysis | 19 |
| abstract_inverted_index.changing | 145 |
| abstract_inverted_index.critical | 6 |
| abstract_inverted_index.ensuring | 8 |
| abstract_inverted_index.evaluate | 87 |
| abstract_inverted_index.learning | 68, 74 |
| abstract_inverted_index.obtained | 113 |
| abstract_inverted_index.proposed | 92 |
| abstract_inverted_index.stablity | 18 |
| abstract_inverted_index.topology | 84 |
| abstract_inverted_index.Transient | 109 |
| abstract_inverted_index.embedding | 51, 55 |
| abstract_inverted_index.generated | 101, 122 |
| abstract_inverted_index.proposed. | 61 |
| abstract_inverted_index.stability | 3, 11, 64, 78, 139 |
| abstract_inverted_index.streaming | 52 |
| abstract_inverted_index.structure | 45 |
| abstract_inverted_index.transient | 2, 17, 63, 77, 138 |
| abstract_inverted_index.vectorize | 40 |
| abstract_inverted_index.(GEDF-SCL) | 69 |
| abstract_inverted_index.GEDF-based | 65 |
| abstract_inverted_index.node-based | 49 |
| abstract_inverted_index.prediction | 4, 140 |
| abstract_inverted_index.simulating | 115 |
| abstract_inverted_index.supervised | 66, 72 |
| abstract_inverted_index.topologies | 99 |
| abstract_inverted_index.considering | 81 |
| abstract_inverted_index.contrastive | 67, 73 |
| abstract_inverted_index.information | 46 |
| abstract_inverted_index.operational | 110 |
| abstract_inverted_index.performance | 89 |
| abstract_inverted_index.simulations | 25 |
| abstract_inverted_index.topological | 44 |
| abstract_inverted_index.topologies. | 125, 148 |
| abstract_inverted_index.traditional | 16 |
| abstract_inverted_index.N-$\bm{m}$-1 | 118 |
| abstract_inverted_index.demonstrated | 128 |
| abstract_inverted_index.information. | 85 |
| abstract_inverted_index.contingencies | 119 |
| abstract_inverted_index.disturbances. | 14 |
| abstract_inverted_index.low-dimensional | 48 |
| abstract_inverted_index.high-dimensional | 41 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile |