Graph Meta-Reinforcement Learning for Transferable Autonomous Mobility-on-Demand Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1145/3534678.3539180
Autonomous Mobility-on-Demand (AMoD) systems represent an attractive alternative to existing transportation paradigms, currently challenged by urbanization and increasing travel needs. By centrally controlling a fleet of self-driving vehicles, these systems provide mobility service to customers and are currently starting to be deployed in a number of cities around the world. Current learning-based approaches for controlling AMoD systems are limited to the single-city scenario, whereby the service operator is allowed to take an unlimited amount of operational decisions within the same transportation system. However, real-world system operators can hardly afford to fully re-train AMoD controllers for every city they operate in, as this could result in a high number of poor-quality decisions during training, making the single-city strategy a potentially impractical solution. To address these limitations, we propose to formalize the multi-city AMoD problem through the lens of meta-reinforcement learning (meta-RL) and devise an actor-critic algorithm based on recurrent graph neural networks. In our approach, AMoD controllers are explicitly trained such that a small amount of experience within a new city will produce good system performance. Empirically, we show how control policies learned through meta-RL are able to achieve near-optimal performance on unseen cities by learning rapidly adaptable policies, thus making them more robust not only to novel environments, but also to distribution shifts common in real-world operations, such as special events, unexpected congestion, and dynamic pricing schemes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3534678.3539180
- https://dl.acm.org/doi/pdf/10.1145/3534678.3539180
- OA Status
- hybrid
- Cited By
- 17
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4290943640
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4290943640Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3534678.3539180Digital Object Identifier
- Title
-
Graph Meta-Reinforcement Learning for Transferable Autonomous Mobility-on-DemandWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-12Full publication date if available
- Authors
-
Daniele Gammelli, Kaidi Yang, J. Michael Harrison, Filipe Rodrigues, Francisco C. Pereira, Marco PavoneList of authors in order
- Landing page
-
https://doi.org/10.1145/3534678.3539180Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3534678.3539180Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3534678.3539180Direct OA link when available
- Concepts
-
Reinforcement learning, Computer science, Service (business), Operations research, Artificial intelligence, Engineering, Economics, EconomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 12, 2023: 3, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4290943640 |
|---|---|
| doi | https://doi.org/10.1145/3534678.3539180 |
| ids.doi | https://doi.org/10.1145/3534678.3539180 |
| ids.openalex | https://openalex.org/W4290943640 |
| fwci | 4.31051325 |
| type | article |
| title | Graph Meta-Reinforcement Learning for Transferable Autonomous Mobility-on-Demand |
| awards[0].id | https://openalex.org/G2962877871 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | 1837135 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2923 |
| biblio.first_page | 2913 |
| topics[0].id | https://openalex.org/T11942 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Transportation and Mobility Innovations |
| topics[1].id | https://openalex.org/T10524 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Traffic control and management |
| topics[2].id | https://openalex.org/T10698 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9965999722480774 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3313 |
| topics[2].subfield.display_name | Transportation |
| topics[2].display_name | Transportation Planning and Optimization |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7760767936706543 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7132213711738586 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780378061 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4649476110935211 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q25351891 |
| concepts[2].display_name | Service (business) |
| concepts[3].id | https://openalex.org/C42475967 |
| concepts[3].level | 1 |
| concepts[3].score | 0.33826494216918945 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[3].display_name | Operations research |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.26480597257614136 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.14343911409378052 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C162324750 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[6].display_name | Economics |
| concepts[7].id | https://openalex.org/C136264566 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q159810 |
| concepts[7].display_name | Economy |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.7760767936706543 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7132213711738586 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/service |
| keywords[2].score | 0.4649476110935211 |
| keywords[2].display_name | Service (business) |
| keywords[3].id | https://openalex.org/keywords/operations-research |
| keywords[3].score | 0.33826494216918945 |
| keywords[3].display_name | Operations research |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.26480597257614136 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.14343911409378052 |
| keywords[5].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1145/3534678.3539180 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4363608767 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3534678.3539180 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
| locations[0].landing_page_url | https://doi.org/10.1145/3534678.3539180 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034366030 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1802-4388 |
| authorships[0].author.display_name | Daniele Gammelli |
| authorships[0].countries | DK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I96673099 |
| authorships[0].affiliations[0].raw_affiliation_string | Technical University of Denmark, Kgs. Lyngby, Denmark |
| authorships[0].institutions[0].id | https://openalex.org/I96673099 |
| authorships[0].institutions[0].ror | https://ror.org/04qtj9h94 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I96673099 |
| authorships[0].institutions[0].country_code | DK |
| authorships[0].institutions[0].display_name | Technical University of Denmark |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniele Gammelli |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Technical University of Denmark, Kgs. Lyngby, Denmark |
| authorships[1].author.id | https://openalex.org/A5075233338 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5120-2866 |
| authorships[1].author.display_name | Kaidi Yang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[1].affiliations[0].raw_affiliation_string | Stanford University, Stanford, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I97018004 |
| authorships[1].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Stanford University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kaidi Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Stanford University, Stanford, CA, USA |
| authorships[2].author.id | https://openalex.org/A5031821299 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3657-2639 |
| authorships[2].author.display_name | J. Michael Harrison |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[2].affiliations[0].raw_affiliation_string | Google Research, Brain Team, San Francisco, CA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[2].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Google (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | James Harrison |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Google Research, Brain Team, San Francisco, CA, USA |
| authorships[3].author.id | https://openalex.org/A5078981714 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6979-6498 |
| authorships[3].author.display_name | Filipe Rodrigues |
| authorships[3].countries | DK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I96673099 |
| authorships[3].affiliations[0].raw_affiliation_string | Technical University of Denmark, Kgs. Lyngby , Denmark |
| authorships[3].institutions[0].id | https://openalex.org/I96673099 |
| authorships[3].institutions[0].ror | https://ror.org/04qtj9h94 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I96673099 |
| authorships[3].institutions[0].country_code | DK |
| authorships[3].institutions[0].display_name | Technical University of Denmark |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Filipe Rodrigues |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Technical University of Denmark, Kgs. Lyngby , Denmark |
| authorships[4].author.id | https://openalex.org/A5001424439 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5457-9909 |
| authorships[4].author.display_name | Francisco C. Pereira |
| authorships[4].countries | DK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I96673099 |
| authorships[4].affiliations[0].raw_affiliation_string | Technical University of Denmark, Kgs. Lyngby , Denmark |
| authorships[4].institutions[0].id | https://openalex.org/I96673099 |
| authorships[4].institutions[0].ror | https://ror.org/04qtj9h94 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I96673099 |
| authorships[4].institutions[0].country_code | DK |
| authorships[4].institutions[0].display_name | Technical University of Denmark |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Francisco Pereira |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Technical University of Denmark, Kgs. Lyngby , Denmark |
| authorships[5].author.id | https://openalex.org/A5050003000 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0206-4337 |
| authorships[5].author.display_name | Marco Pavone |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[5].affiliations[0].raw_affiliation_string | Stanford University, Stanford, CA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I97018004 |
| authorships[5].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Stanford University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Marco Pavone |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Stanford University, Stanford, CA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3534678.3539180 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Graph Meta-Reinforcement Learning for Transferable Autonomous Mobility-on-Demand |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11942 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Transportation and Mobility Innovations |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4306904969, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2138720691, https://openalex.org/W2376932109 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3534678.3539180 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4363608767 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3534678.3539180 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3534678.3539180 |
| primary_location.id | doi:10.1145/3534678.3539180 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4363608767 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3534678.3539180 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
| primary_location.landing_page_url | https://doi.org/10.1145/3534678.3539180 |
| publication_date | 2022-08-12 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W6663073678, https://openalex.org/W3155841317, https://openalex.org/W3210183837, https://openalex.org/W2803952469, https://openalex.org/W2612340487, https://openalex.org/W2296638040, https://openalex.org/W2963144120, https://openalex.org/W2915314538, https://openalex.org/W3003899243, https://openalex.org/W3015295488, https://openalex.org/W3089834075, https://openalex.org/W4226047880, https://openalex.org/W3176602965, https://openalex.org/W4206788904, https://openalex.org/W2911752602, https://openalex.org/W6677916085, https://openalex.org/W2604763608, https://openalex.org/W2552391307, https://openalex.org/W126628216, https://openalex.org/W3088562575, https://openalex.org/W2260756217, https://openalex.org/W2157331557, https://openalex.org/W2095818975, https://openalex.org/W3002603762, https://openalex.org/W6751575707, https://openalex.org/W3022566517, https://openalex.org/W6639683144, https://openalex.org/W6640593155, https://openalex.org/W1988580225, https://openalex.org/W2089076789, https://openalex.org/W3186668962, https://openalex.org/W1890688605, https://openalex.org/W4411187082, https://openalex.org/W4231927217, https://openalex.org/W4214717370 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 23, 43, 105, 117, 161, 167 |
| abstract_inverted_index.By | 20 |
| abstract_inverted_index.In | 151 |
| abstract_inverted_index.To | 121 |
| abstract_inverted_index.an | 5, 71, 142 |
| abstract_inverted_index.as | 100, 218 |
| abstract_inverted_index.be | 40 |
| abstract_inverted_index.by | 14, 193 |
| abstract_inverted_index.in | 42, 104, 214 |
| abstract_inverted_index.is | 67 |
| abstract_inverted_index.of | 25, 45, 74, 108, 136, 164 |
| abstract_inverted_index.on | 146, 190 |
| abstract_inverted_index.to | 8, 33, 39, 59, 69, 89, 127, 186, 205, 210 |
| abstract_inverted_index.we | 125, 176 |
| abstract_inverted_index.and | 16, 35, 140, 223 |
| abstract_inverted_index.are | 36, 57, 156, 184 |
| abstract_inverted_index.but | 208 |
| abstract_inverted_index.can | 86 |
| abstract_inverted_index.for | 53, 94 |
| abstract_inverted_index.how | 178 |
| abstract_inverted_index.in, | 99 |
| abstract_inverted_index.new | 168 |
| abstract_inverted_index.not | 203 |
| abstract_inverted_index.our | 152 |
| abstract_inverted_index.the | 48, 60, 64, 78, 114, 129, 134 |
| abstract_inverted_index.AMoD | 55, 92, 131, 154 |
| abstract_inverted_index.able | 185 |
| abstract_inverted_index.also | 209 |
| abstract_inverted_index.city | 96, 169 |
| abstract_inverted_index.good | 172 |
| abstract_inverted_index.high | 106 |
| abstract_inverted_index.lens | 135 |
| abstract_inverted_index.more | 201 |
| abstract_inverted_index.only | 204 |
| abstract_inverted_index.same | 79 |
| abstract_inverted_index.show | 177 |
| abstract_inverted_index.such | 159, 217 |
| abstract_inverted_index.take | 70 |
| abstract_inverted_index.that | 160 |
| abstract_inverted_index.them | 200 |
| abstract_inverted_index.they | 97 |
| abstract_inverted_index.this | 101 |
| abstract_inverted_index.thus | 198 |
| abstract_inverted_index.will | 170 |
| abstract_inverted_index.based | 145 |
| abstract_inverted_index.could | 102 |
| abstract_inverted_index.every | 95 |
| abstract_inverted_index.fleet | 24 |
| abstract_inverted_index.fully | 90 |
| abstract_inverted_index.graph | 148 |
| abstract_inverted_index.novel | 206 |
| abstract_inverted_index.small | 162 |
| abstract_inverted_index.these | 28, 123 |
| abstract_inverted_index.(AMoD) | 2 |
| abstract_inverted_index.afford | 88 |
| abstract_inverted_index.amount | 73, 163 |
| abstract_inverted_index.around | 47 |
| abstract_inverted_index.cities | 46, 192 |
| abstract_inverted_index.common | 213 |
| abstract_inverted_index.devise | 141 |
| abstract_inverted_index.during | 111 |
| abstract_inverted_index.hardly | 87 |
| abstract_inverted_index.making | 113, 199 |
| abstract_inverted_index.needs. | 19 |
| abstract_inverted_index.neural | 149 |
| abstract_inverted_index.number | 44, 107 |
| abstract_inverted_index.result | 103 |
| abstract_inverted_index.robust | 202 |
| abstract_inverted_index.shifts | 212 |
| abstract_inverted_index.system | 84, 173 |
| abstract_inverted_index.travel | 18 |
| abstract_inverted_index.unseen | 191 |
| abstract_inverted_index.within | 77, 166 |
| abstract_inverted_index.world. | 49 |
| abstract_inverted_index.Current | 50 |
| abstract_inverted_index.achieve | 187 |
| abstract_inverted_index.address | 122 |
| abstract_inverted_index.allowed | 68 |
| abstract_inverted_index.control | 179 |
| abstract_inverted_index.dynamic | 224 |
| abstract_inverted_index.events, | 220 |
| abstract_inverted_index.learned | 181 |
| abstract_inverted_index.limited | 58 |
| abstract_inverted_index.meta-RL | 183 |
| abstract_inverted_index.operate | 98 |
| abstract_inverted_index.pricing | 225 |
| abstract_inverted_index.problem | 132 |
| abstract_inverted_index.produce | 171 |
| abstract_inverted_index.propose | 126 |
| abstract_inverted_index.provide | 30 |
| abstract_inverted_index.rapidly | 195 |
| abstract_inverted_index.service | 32, 65 |
| abstract_inverted_index.special | 219 |
| abstract_inverted_index.system. | 81 |
| abstract_inverted_index.systems | 3, 29, 56 |
| abstract_inverted_index.through | 133, 182 |
| abstract_inverted_index.trained | 158 |
| abstract_inverted_index.whereby | 63 |
| abstract_inverted_index.However, | 82 |
| abstract_inverted_index.deployed | 41 |
| abstract_inverted_index.existing | 9 |
| abstract_inverted_index.learning | 138, 194 |
| abstract_inverted_index.mobility | 31 |
| abstract_inverted_index.operator | 66 |
| abstract_inverted_index.policies | 180 |
| abstract_inverted_index.re-train | 91 |
| abstract_inverted_index.schemes. | 226 |
| abstract_inverted_index.starting | 38 |
| abstract_inverted_index.strategy | 116 |
| abstract_inverted_index.(meta-RL) | 139 |
| abstract_inverted_index.adaptable | 196 |
| abstract_inverted_index.algorithm | 144 |
| abstract_inverted_index.approach, | 153 |
| abstract_inverted_index.centrally | 21 |
| abstract_inverted_index.currently | 12, 37 |
| abstract_inverted_index.customers | 34 |
| abstract_inverted_index.decisions | 76, 110 |
| abstract_inverted_index.formalize | 128 |
| abstract_inverted_index.networks. | 150 |
| abstract_inverted_index.operators | 85 |
| abstract_inverted_index.policies, | 197 |
| abstract_inverted_index.recurrent | 147 |
| abstract_inverted_index.represent | 4 |
| abstract_inverted_index.scenario, | 62 |
| abstract_inverted_index.solution. | 120 |
| abstract_inverted_index.training, | 112 |
| abstract_inverted_index.unlimited | 72 |
| abstract_inverted_index.vehicles, | 27 |
| abstract_inverted_index.Autonomous | 0 |
| abstract_inverted_index.approaches | 52 |
| abstract_inverted_index.attractive | 6 |
| abstract_inverted_index.challenged | 13 |
| abstract_inverted_index.experience | 165 |
| abstract_inverted_index.explicitly | 157 |
| abstract_inverted_index.increasing | 17 |
| abstract_inverted_index.multi-city | 130 |
| abstract_inverted_index.paradigms, | 11 |
| abstract_inverted_index.real-world | 83, 215 |
| abstract_inverted_index.unexpected | 221 |
| abstract_inverted_index.alternative | 7 |
| abstract_inverted_index.congestion, | 222 |
| abstract_inverted_index.controllers | 93, 155 |
| abstract_inverted_index.controlling | 22, 54 |
| abstract_inverted_index.impractical | 119 |
| abstract_inverted_index.operational | 75 |
| abstract_inverted_index.operations, | 216 |
| abstract_inverted_index.performance | 189 |
| abstract_inverted_index.potentially | 118 |
| abstract_inverted_index.single-city | 61, 115 |
| abstract_inverted_index.Empirically, | 175 |
| abstract_inverted_index.actor-critic | 143 |
| abstract_inverted_index.distribution | 211 |
| abstract_inverted_index.limitations, | 124 |
| abstract_inverted_index.near-optimal | 188 |
| abstract_inverted_index.performance. | 174 |
| abstract_inverted_index.poor-quality | 109 |
| abstract_inverted_index.self-driving | 26 |
| abstract_inverted_index.urbanization | 15 |
| abstract_inverted_index.environments, | 207 |
| abstract_inverted_index.learning-based | 51 |
| abstract_inverted_index.transportation | 10, 80 |
| abstract_inverted_index.Mobility-on-Demand | 1 |
| abstract_inverted_index.meta-reinforcement | 137 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.96147621 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |