Graph Neural Networks Empowered Origin‐Destination Learning for Urban Traffic Prediction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1049/cit2.70021
Urban traffic prediction with high precision is always the unremitting pursuit of intelligent transportation systems and is instrumental in bringing smart cities into reality. The fundamental challenges for traffic prediction lie in the accurate modelling of spatial and temporal traffic dynamics. Existing approaches mainly focus on modelling the traffic data itself, but do not explore the traffic correlations implicit in origin‐destination (OD) data. In this paper, we propose STOD‐Net, a dynamic spatial‐temporal OD feature‐enhanced deep network, to simultaneously predict the in‐traffic and out‐traffic for each and every region of a city. We model the OD data as dynamic graphs and adopt graph neural networks in STOD‐Net to learn a low‐dimensional representation for each region. As per the region feature, we design a gating mechanism and operate it on the traffic feature learning to explicitly capture spatial correlations. To further capture the complicated spatial and temporal dependencies among different regions, we propose a novel joint feature, learning block in STOD‐Net and transfer the hybrid OD features to each block to make the learning process spatiotemporal‐aware. We evaluate the effectiveness of STOD‐Net on two benchmark datasets, and experimental results demonstrate that it outperforms the state‐of‐the‐art by approximately 5% in terms of prediction accuracy and considerably improves prediction stability up to 80% in terms of standard deviation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/cit2.70021
- OA Status
- gold
- Cited By
- 1
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410859114
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410859114Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/cit2.70021Digital Object Identifier
- Title
-
Graph Neural Networks Empowered Origin‐Destination Learning for Urban Traffic PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-29Full publication date if available
- Authors
-
Chuanting Zhang, Guoqing Ma, Liang Zhang, Basem ShihadaList of authors in order
- Landing page
-
https://doi.org/10.1049/cit2.70021Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1049/cit2.70021Direct OA link when available
- Concepts
-
Computer science, Block (permutation group theory), Feature (linguistics), Feature learning, Benchmark (surveying), Graph, Artificial intelligence, Data mining, Deep learning, Artificial neural network, Machine learning, Theoretical computer science, Geography, Mathematics, Linguistics, Geodesy, Geometry, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410859114 |
|---|---|
| doi | https://doi.org/10.1049/cit2.70021 |
| ids.doi | https://doi.org/10.1049/cit2.70021 |
| ids.openalex | https://openalex.org/W4410859114 |
| fwci | 2.70577588 |
| type | article |
| title | Graph Neural Networks Empowered Origin‐Destination Learning for Urban Traffic Prediction |
| awards[0].id | https://openalex.org/G6861208585 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62401338 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 4 |
| biblio.volume | 10 |
| biblio.last_page | 1076 |
| biblio.first_page | 1062 |
| grants[0].funder | https://openalex.org/F4320321001 |
| grants[0].award_id | 62401338 |
| grants[0].funder_display_name | National Natural Science Foundation of China |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T10698 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Transportation Planning and Optimization |
| topics[2].id | https://openalex.org/T11980 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3313 |
| topics[2].subfield.display_name | Transportation |
| topics[2].display_name | Human Mobility and Location-Based Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.703315258026123 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777210771 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5978798270225525 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[1].display_name | Block (permutation group theory) |
| concepts[2].id | https://openalex.org/C2776401178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5282860398292542 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[2].display_name | Feature (linguistics) |
| concepts[3].id | https://openalex.org/C59404180 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5276806950569153 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[3].display_name | Feature learning |
| concepts[4].id | https://openalex.org/C185798385 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5087195038795471 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[4].display_name | Benchmark (surveying) |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5042473077774048 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.47079434990882874 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4641813635826111 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42654505372047424 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42420095205307007 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.41204649209976196 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.13006749749183655 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.12372240424156189 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09371176362037659 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C13280743 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[15].display_name | Geodesy |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.703315258026123 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/block |
| keywords[1].score | 0.5978798270225525 |
| keywords[1].display_name | Block (permutation group theory) |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.5282860398292542 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/feature-learning |
| keywords[3].score | 0.5276806950569153 |
| keywords[3].display_name | Feature learning |
| keywords[4].id | https://openalex.org/keywords/benchmark |
| keywords[4].score | 0.5087195038795471 |
| keywords[4].display_name | Benchmark (surveying) |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.5042473077774048 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.47079434990882874 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4641813635826111 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.42654505372047424 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.42420095205307007 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.41204649209976196 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.13006749749183655 |
| keywords[11].display_name | Theoretical computer science |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.12372240424156189 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.09371176362037659 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1049/cit2.70021 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898415742 |
| locations[0].source.issn | 2468-2322, 2468-6557 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2468-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | CAAI Transactions on Intelligence Technology |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | CAAI Transactions on Intelligence Technology |
| locations[0].landing_page_url | https://doi.org/10.1049/cit2.70021 |
| locations[1].id | pmh:oai:doaj.org/article:3b288016d45b4b738f16ea7dacf91982 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | CAAI Transactions on Intelligence Technology, Vol 10, Iss 4, Pp 1062-1076 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/3b288016d45b4b738f16ea7dacf91982 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5045797640 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6685-4071 |
| authorships[0].author.display_name | Chuanting Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I154099455 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Software Shandong University Jinan China |
| authorships[0].affiliations[1].raw_affiliation_string | Shandong Key Laboratory of Intelligent Communication and Sensing‐Computing Integration Jinan China |
| authorships[0].institutions[0].id | https://openalex.org/I154099455 |
| authorships[0].institutions[0].ror | https://ror.org/0207yh398 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I154099455 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shandong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chuanting Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Software Shandong University Jinan China, Shandong Key Laboratory of Intelligent Communication and Sensing‐Computing Integration Jinan China |
| authorships[1].author.id | https://openalex.org/A5008800381 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7975-9591 |
| authorships[1].author.display_name | Guoqing Ma |
| authorships[1].countries | SA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I71920554 |
| authorships[1].affiliations[0].raw_affiliation_string | Computer, Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia |
| authorships[1].institutions[0].id | https://openalex.org/I71920554 |
| authorships[1].institutions[0].ror | https://ror.org/01q3tbs38 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I71920554 |
| authorships[1].institutions[0].country_code | SA |
| authorships[1].institutions[0].display_name | King Abdullah University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guoqing Ma |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computer, Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia |
| authorships[2].author.id | https://openalex.org/A5057511655 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5039-7582 |
| authorships[2].author.display_name | Liang Zhang |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I71920554 |
| authorships[2].affiliations[0].raw_affiliation_string | Computer, Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I71920554 |
| authorships[2].institutions[0].ror | https://ror.org/01q3tbs38 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I71920554 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | King Abdullah University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liang Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Computer, Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5063215964 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4434-4334 |
| authorships[3].author.display_name | Basem Shihada |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I71920554 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer, Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I71920554 |
| authorships[3].institutions[0].ror | https://ror.org/01q3tbs38 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I71920554 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | King Abdullah University of Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Basem Shihada |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer, Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1049/cit2.70021 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Graph Neural Networks Empowered Origin‐Destination Learning for Urban Traffic Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W4321353415, https://openalex.org/W2745001401, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W4246352526, https://openalex.org/W2121910908, https://openalex.org/W3048601286, https://openalex.org/W2965925734 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1049/cit2.70021 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898415742 |
| best_oa_location.source.issn | 2468-2322, 2468-6557 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2468-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | CAAI Transactions on Intelligence Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | CAAI Transactions on Intelligence Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1049/cit2.70021 |
| primary_location.id | doi:10.1049/cit2.70021 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898415742 |
| primary_location.source.issn | 2468-2322, 2468-6557 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2468-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | CAAI Transactions on Intelligence Technology |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | CAAI Transactions on Intelligence Technology |
| primary_location.landing_page_url | https://doi.org/10.1049/cit2.70021 |
| publication_date | 2025-05-29 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3008621121, https://openalex.org/W3034944009, https://openalex.org/W2112738128, https://openalex.org/W2946081445, https://openalex.org/W2133703098, https://openalex.org/W4225605548, https://openalex.org/W2788134583, https://openalex.org/W4206633979, https://openalex.org/W3193007873, https://openalex.org/W2903871660, https://openalex.org/W2950817888, https://openalex.org/W2593182953, https://openalex.org/W2613322775, https://openalex.org/W2919115771, https://openalex.org/W2036785686, https://openalex.org/W2997848713, https://openalex.org/W2910892140, https://openalex.org/W2921319277, https://openalex.org/W2786915849, https://openalex.org/W2558748708, https://openalex.org/W2962790412, https://openalex.org/W4206626673, https://openalex.org/W2996451395, https://openalex.org/W626441390, https://openalex.org/W2938342315, https://openalex.org/W2069929199, https://openalex.org/W2073640212, https://openalex.org/W2190353863, https://openalex.org/W2146399611, https://openalex.org/W2572939427, https://openalex.org/W2782791108, https://openalex.org/W2907228515, https://openalex.org/W2901504064, https://openalex.org/W3001314220, https://openalex.org/W3039638631, https://openalex.org/W2904813135, https://openalex.org/W4318811704, https://openalex.org/W3158304688, https://openalex.org/W3094231942, https://openalex.org/W2994901268, https://openalex.org/W2194775991, https://openalex.org/W2963446712, https://openalex.org/W2160507653, https://openalex.org/W2487670340, https://openalex.org/W3098602644, https://openalex.org/W2166277028, https://openalex.org/W3103720336, https://openalex.org/W2132711183, https://openalex.org/W2530386080, https://openalex.org/W4251065218 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 70, 90, 109, 122, 152 |
| abstract_inverted_index.5% | 196 |
| abstract_inverted_index.As | 115 |
| abstract_inverted_index.In | 64 |
| abstract_inverted_index.OD | 73, 95, 164 |
| abstract_inverted_index.To | 138 |
| abstract_inverted_index.We | 92, 175 |
| abstract_inverted_index.as | 97 |
| abstract_inverted_index.by | 194 |
| abstract_inverted_index.do | 53 |
| abstract_inverted_index.in | 19, 32, 60, 105, 158, 197, 210 |
| abstract_inverted_index.is | 7, 17 |
| abstract_inverted_index.it | 127, 190 |
| abstract_inverted_index.of | 12, 36, 89, 179, 199, 212 |
| abstract_inverted_index.on | 46, 128, 181 |
| abstract_inverted_index.to | 77, 107, 133, 166, 169, 208 |
| abstract_inverted_index.up | 207 |
| abstract_inverted_index.we | 67, 120, 150 |
| abstract_inverted_index.80% | 209 |
| abstract_inverted_index.The | 25 |
| abstract_inverted_index.and | 16, 38, 82, 86, 100, 125, 144, 160, 185, 202 |
| abstract_inverted_index.but | 52 |
| abstract_inverted_index.for | 28, 84, 112 |
| abstract_inverted_index.lie | 31 |
| abstract_inverted_index.not | 54 |
| abstract_inverted_index.per | 116 |
| abstract_inverted_index.the | 9, 33, 48, 56, 80, 94, 117, 129, 141, 162, 171, 177, 192 |
| abstract_inverted_index.two | 182 |
| abstract_inverted_index.(OD) | 62 |
| abstract_inverted_index.data | 50, 96 |
| abstract_inverted_index.deep | 75 |
| abstract_inverted_index.each | 85, 113, 167 |
| abstract_inverted_index.high | 5 |
| abstract_inverted_index.into | 23 |
| abstract_inverted_index.make | 170 |
| abstract_inverted_index.that | 189 |
| abstract_inverted_index.this | 65 |
| abstract_inverted_index.with | 4 |
| abstract_inverted_index.Urban | 1 |
| abstract_inverted_index.adopt | 101 |
| abstract_inverted_index.among | 147 |
| abstract_inverted_index.block | 157, 168 |
| abstract_inverted_index.city. | 91 |
| abstract_inverted_index.data. | 63 |
| abstract_inverted_index.every | 87 |
| abstract_inverted_index.focus | 45 |
| abstract_inverted_index.graph | 102 |
| abstract_inverted_index.joint | 154 |
| abstract_inverted_index.learn | 108 |
| abstract_inverted_index.model | 93 |
| abstract_inverted_index.novel | 153 |
| abstract_inverted_index.smart | 21 |
| abstract_inverted_index.terms | 198, 211 |
| abstract_inverted_index.always | 8 |
| abstract_inverted_index.cities | 22 |
| abstract_inverted_index.design | 121 |
| abstract_inverted_index.gating | 123 |
| abstract_inverted_index.graphs | 99 |
| abstract_inverted_index.hybrid | 163 |
| abstract_inverted_index.mainly | 44 |
| abstract_inverted_index.neural | 103 |
| abstract_inverted_index.paper, | 66 |
| abstract_inverted_index.region | 88, 118 |
| abstract_inverted_index.capture | 135, 140 |
| abstract_inverted_index.dynamic | 71, 98 |
| abstract_inverted_index.explore | 55 |
| abstract_inverted_index.feature | 131 |
| abstract_inverted_index.further | 139 |
| abstract_inverted_index.itself, | 51 |
| abstract_inverted_index.operate | 126 |
| abstract_inverted_index.predict | 79 |
| abstract_inverted_index.process | 173 |
| abstract_inverted_index.propose | 68, 151 |
| abstract_inverted_index.pursuit | 11 |
| abstract_inverted_index.region. | 114 |
| abstract_inverted_index.results | 187 |
| abstract_inverted_index.spatial | 37, 136, 143 |
| abstract_inverted_index.systems | 15 |
| abstract_inverted_index.traffic | 2, 29, 40, 49, 57, 130 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Existing | 42 |
| abstract_inverted_index.accuracy | 201 |
| abstract_inverted_index.accurate | 34 |
| abstract_inverted_index.bringing | 20 |
| abstract_inverted_index.evaluate | 176 |
| abstract_inverted_index.feature, | 119, 155 |
| abstract_inverted_index.features | 165 |
| abstract_inverted_index.implicit | 59 |
| abstract_inverted_index.improves | 204 |
| abstract_inverted_index.learning | 132, 156, 172 |
| abstract_inverted_index.network, | 76 |
| abstract_inverted_index.networks | 104 |
| abstract_inverted_index.reality. | 24 |
| abstract_inverted_index.regions, | 149 |
| abstract_inverted_index.standard | 213 |
| abstract_inverted_index.temporal | 39, 145 |
| abstract_inverted_index.transfer | 161 |
| abstract_inverted_index.benchmark | 183 |
| abstract_inverted_index.datasets, | 184 |
| abstract_inverted_index.different | 148 |
| abstract_inverted_index.dynamics. | 41 |
| abstract_inverted_index.mechanism | 124 |
| abstract_inverted_index.modelling | 35, 47 |
| abstract_inverted_index.precision | 6 |
| abstract_inverted_index.stability | 206 |
| abstract_inverted_index.STOD‐Net | 106, 159, 180 |
| abstract_inverted_index.approaches | 43 |
| abstract_inverted_index.challenges | 27 |
| abstract_inverted_index.deviation. | 214 |
| abstract_inverted_index.explicitly | 134 |
| abstract_inverted_index.prediction | 3, 30, 200, 205 |
| abstract_inverted_index.STOD‐Net, | 69 |
| abstract_inverted_index.complicated | 142 |
| abstract_inverted_index.demonstrate | 188 |
| abstract_inverted_index.fundamental | 26 |
| abstract_inverted_index.intelligent | 13 |
| abstract_inverted_index.outperforms | 191 |
| abstract_inverted_index.unremitting | 10 |
| abstract_inverted_index.considerably | 203 |
| abstract_inverted_index.correlations | 58 |
| abstract_inverted_index.dependencies | 146 |
| abstract_inverted_index.experimental | 186 |
| abstract_inverted_index.instrumental | 18 |
| abstract_inverted_index.in‐traffic | 81 |
| abstract_inverted_index.approximately | 195 |
| abstract_inverted_index.correlations. | 137 |
| abstract_inverted_index.effectiveness | 178 |
| abstract_inverted_index.out‐traffic | 83 |
| abstract_inverted_index.representation | 111 |
| abstract_inverted_index.simultaneously | 78 |
| abstract_inverted_index.transportation | 14 |
| abstract_inverted_index.low‐dimensional | 110 |
| abstract_inverted_index.feature‐enhanced | 74 |
| abstract_inverted_index.spatial‐temporal | 72 |
| abstract_inverted_index.origin‐destination | 61 |
| abstract_inverted_index.state‐of‐the‐art | 193 |
| abstract_inverted_index.spatiotemporal‐aware. | 174 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.82217626 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |