Graph Neural Tangent Kernel: Convergence on Large Graphs Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2301.10808
Graph neural networks (GNNs) achieve remarkable performance in graph machine learning tasks but can be hard to train on large-graph data, where their learning dynamics are not well understood. We investigate the training dynamics of large-graph GNNs using graph neural tangent kernels (GNTKs) and graphons. In the limit of large width, optimization of an overparametrized NN is equivalent to kernel regression on the NTK. Here, we investigate how the GNTK evolves as another independent dimension is varied: the graph size. We use graphons to define limit objects -- graphon NNs for GNNs, and graphon NTKs for GNTKs -- , and prove that, on a sequence of graphs, the GNTKs converge to the graphon NTK. We further prove that the spectrum of the GNTK, which is related to the directions of fastest learning which becomes relevant during early stopping, converges to the spectrum of the graphon NTK. This implies that in the large-graph limit, the GNTK fitted on a graph of moderate size can be used to solve the same task on the large graph, and to infer the learning dynamics of the large-graph GNN. These results are verified empirically on node regression and classification tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2301.10808
- https://arxiv.org/pdf/2301.10808
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318347779
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318347779Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2301.10808Digital Object Identifier
- Title
-
Graph Neural Tangent Kernel: Convergence on Large GraphsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-25Full publication date if available
- Authors
-
Sanjukta Krishnagopal, Luana RuizList of authors in order
- Landing page
-
https://arxiv.org/abs/2301.10808Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2301.10808Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2301.10808Direct OA link when available
- Concepts
-
Graph, Computer science, Line graph, Tangent, Voltage graph, Algorithm, Combinatorics, Mathematics, Theoretical computer science, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318347779 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2301.10808 |
| ids.doi | https://doi.org/10.48550/arxiv.2301.10808 |
| ids.openalex | https://openalex.org/W4318347779 |
| fwci | |
| type | preprint |
| title | Graph Neural Tangent Kernel: Convergence on Large Graphs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9599000215530396 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10241 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9239000082015991 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Functional Brain Connectivity Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C132525143 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6294085383415222 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[0].display_name | Graph |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5211008787155151 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C203776342 |
| concepts[2].level | 3 |
| concepts[2].score | 0.49458739161491394 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1378376 |
| concepts[2].display_name | Line graph |
| concepts[3].id | https://openalex.org/C138187205 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45138296484947205 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q131251 |
| concepts[3].display_name | Tangent |
| concepts[4].id | https://openalex.org/C22149727 |
| concepts[4].level | 4 |
| concepts[4].score | 0.4156011939048767 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7940747 |
| concepts[4].display_name | Voltage graph |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3941720426082611 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C114614502 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3717186450958252 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[6].display_name | Combinatorics |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3558061718940735 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.30809974670410156 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/graph |
| keywords[0].score | 0.6294085383415222 |
| keywords[0].display_name | Graph |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5211008787155151 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/line-graph |
| keywords[2].score | 0.49458739161491394 |
| keywords[2].display_name | Line graph |
| keywords[3].id | https://openalex.org/keywords/tangent |
| keywords[3].score | 0.45138296484947205 |
| keywords[3].display_name | Tangent |
| keywords[4].id | https://openalex.org/keywords/voltage-graph |
| keywords[4].score | 0.4156011939048767 |
| keywords[4].display_name | Voltage graph |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.3941720426082611 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/combinatorics |
| keywords[6].score | 0.3717186450958252 |
| keywords[6].display_name | Combinatorics |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.3558061718940735 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.30809974670410156 |
| keywords[8].display_name | Theoretical computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2301.10808 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2301.10808 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2301.10808 |
| locations[1].id | doi:10.48550/arxiv.2301.10808 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2301.10808 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5002601106 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1556-404X |
| authorships[0].author.display_name | Sanjukta Krishnagopal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Krishnagopal, Sanjukta |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5036583414 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9666-1211 |
| authorships[1].author.display_name | Luana Ruiz |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ruiz, Luana |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2301.10808 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Graph Neural Tangent Kernel: Convergence on Large Graphs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2903067171, https://openalex.org/W2380035736, https://openalex.org/W1927597435, https://openalex.org/W3207232533, https://openalex.org/W1568744482, https://openalex.org/W4299307887, https://openalex.org/W2952803432, https://openalex.org/W2106452164, https://openalex.org/W2389138578, https://openalex.org/W2954009223 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2301.10808 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2301.10808 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2301.10808 |
| primary_location.id | pmh:oai:arXiv.org:2301.10808 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2301.10808 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2301.10808 |
| publication_date | 2023-01-25 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index., | 98 |
| abstract_inverted_index.a | 103, 157 |
| abstract_inverted_index.-- | 87, 97 |
| abstract_inverted_index.In | 45 |
| abstract_inverted_index.NN | 55 |
| abstract_inverted_index.We | 29, 80, 114 |
| abstract_inverted_index.an | 53 |
| abstract_inverted_index.as | 71 |
| abstract_inverted_index.be | 14, 163 |
| abstract_inverted_index.in | 7, 149 |
| abstract_inverted_index.is | 56, 75, 124 |
| abstract_inverted_index.of | 34, 48, 52, 105, 120, 129, 142, 159, 180 |
| abstract_inverted_index.on | 18, 61, 102, 156, 170, 189 |
| abstract_inverted_index.to | 16, 58, 83, 110, 126, 139, 165, 175 |
| abstract_inverted_index.we | 65 |
| abstract_inverted_index.NNs | 89 |
| abstract_inverted_index.and | 43, 92, 99, 174, 192 |
| abstract_inverted_index.are | 25, 186 |
| abstract_inverted_index.but | 12 |
| abstract_inverted_index.can | 13, 162 |
| abstract_inverted_index.for | 90, 95 |
| abstract_inverted_index.how | 67 |
| abstract_inverted_index.not | 26 |
| abstract_inverted_index.the | 31, 46, 62, 68, 77, 107, 111, 118, 121, 127, 140, 143, 150, 153, 167, 171, 177, 181 |
| abstract_inverted_index.use | 81 |
| abstract_inverted_index.GNN. | 183 |
| abstract_inverted_index.GNNs | 36 |
| abstract_inverted_index.GNTK | 69, 154 |
| abstract_inverted_index.NTK. | 63, 113, 145 |
| abstract_inverted_index.NTKs | 94 |
| abstract_inverted_index.This | 146 |
| abstract_inverted_index.hard | 15 |
| abstract_inverted_index.node | 190 |
| abstract_inverted_index.same | 168 |
| abstract_inverted_index.size | 161 |
| abstract_inverted_index.task | 169 |
| abstract_inverted_index.that | 117, 148 |
| abstract_inverted_index.used | 164 |
| abstract_inverted_index.well | 27 |
| abstract_inverted_index.GNNs, | 91 |
| abstract_inverted_index.GNTK, | 122 |
| abstract_inverted_index.GNTKs | 96, 108 |
| abstract_inverted_index.Graph | 0 |
| abstract_inverted_index.Here, | 64 |
| abstract_inverted_index.These | 184 |
| abstract_inverted_index.data, | 20 |
| abstract_inverted_index.early | 136 |
| abstract_inverted_index.graph | 8, 38, 78, 158 |
| abstract_inverted_index.infer | 176 |
| abstract_inverted_index.large | 49, 172 |
| abstract_inverted_index.limit | 47, 85 |
| abstract_inverted_index.prove | 100, 116 |
| abstract_inverted_index.size. | 79 |
| abstract_inverted_index.solve | 166 |
| abstract_inverted_index.tasks | 11 |
| abstract_inverted_index.that, | 101 |
| abstract_inverted_index.their | 22 |
| abstract_inverted_index.train | 17 |
| abstract_inverted_index.using | 37 |
| abstract_inverted_index.where | 21 |
| abstract_inverted_index.which | 123, 132 |
| abstract_inverted_index.(GNNs) | 3 |
| abstract_inverted_index.define | 84 |
| abstract_inverted_index.during | 135 |
| abstract_inverted_index.fitted | 155 |
| abstract_inverted_index.graph, | 173 |
| abstract_inverted_index.kernel | 59 |
| abstract_inverted_index.limit, | 152 |
| abstract_inverted_index.neural | 1, 39 |
| abstract_inverted_index.tasks. | 194 |
| abstract_inverted_index.width, | 50 |
| abstract_inverted_index.(GNTKs) | 42 |
| abstract_inverted_index.achieve | 4 |
| abstract_inverted_index.another | 72 |
| abstract_inverted_index.becomes | 133 |
| abstract_inverted_index.evolves | 70 |
| abstract_inverted_index.fastest | 130 |
| abstract_inverted_index.further | 115 |
| abstract_inverted_index.graphon | 88, 93, 112, 144 |
| abstract_inverted_index.graphs, | 106 |
| abstract_inverted_index.implies | 147 |
| abstract_inverted_index.kernels | 41 |
| abstract_inverted_index.machine | 9 |
| abstract_inverted_index.objects | 86 |
| abstract_inverted_index.related | 125 |
| abstract_inverted_index.results | 185 |
| abstract_inverted_index.tangent | 40 |
| abstract_inverted_index.varied: | 76 |
| abstract_inverted_index.converge | 109 |
| abstract_inverted_index.dynamics | 24, 33, 179 |
| abstract_inverted_index.graphons | 82 |
| abstract_inverted_index.learning | 10, 23, 131, 178 |
| abstract_inverted_index.moderate | 160 |
| abstract_inverted_index.networks | 2 |
| abstract_inverted_index.relevant | 134 |
| abstract_inverted_index.sequence | 104 |
| abstract_inverted_index.spectrum | 119, 141 |
| abstract_inverted_index.training | 32 |
| abstract_inverted_index.verified | 187 |
| abstract_inverted_index.converges | 138 |
| abstract_inverted_index.dimension | 74 |
| abstract_inverted_index.graphons. | 44 |
| abstract_inverted_index.stopping, | 137 |
| abstract_inverted_index.directions | 128 |
| abstract_inverted_index.equivalent | 57 |
| abstract_inverted_index.regression | 60, 191 |
| abstract_inverted_index.remarkable | 5 |
| abstract_inverted_index.empirically | 188 |
| abstract_inverted_index.independent | 73 |
| abstract_inverted_index.investigate | 30, 66 |
| abstract_inverted_index.large-graph | 19, 35, 151, 182 |
| abstract_inverted_index.performance | 6 |
| abstract_inverted_index.understood. | 28 |
| abstract_inverted_index.optimization | 51 |
| abstract_inverted_index.classification | 193 |
| abstract_inverted_index.overparametrized | 54 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |