GraphDOP: Towards skilful data-driven medium-range weather forecasts learnt and initialised directly from observations Article Swipe
Mihai Alexe
,
Eulalie Boucher
,
Peter Lean
,
Ewan Pinnington
,
Patrick Laloyaux
,
A. P. McNally
,
Simon Lang
,
Matthew Chantry
,
C. J. Burrows
,
Marcin Chrust
,
Florian Pinault
,
Ethel Villeneuve
,
Niels Bormann
,
S. B. Healy
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.15687
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.15687
We introduce GraphDOP, a new data-driven, end-to-end forecast system developed at the European Centre for Medium-Range Weather Forecasts (ECMWF) that is trained and initialised exclusively from Earth System observations, with no physics-based (re)analysis inputs or feedbacks. GraphDOP learns the correlations between observed quantities - such as brightness temperatures from polar orbiters and geostationary satellites - and geophysical quantities of interest (that are measured by conventional observations), to form a coherent latent representation of Earth System state dynamics and physical processes, and is capable of producing skilful predictions of relevant weather parameters up to five days into the future.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.15687
- https://arxiv.org/pdf/2412.15687
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405715399
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405715399Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.15687Digital Object Identifier
- Title
-
GraphDOP: Towards skilful data-driven medium-range weather forecasts learnt and initialised directly from observationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-20Full publication date if available
- Authors
-
Mihai Alexe, Eulalie Boucher, Peter Lean, Ewan Pinnington, Patrick Laloyaux, A. P. McNally, Simon Lang, Matthew Chantry, C. J. Burrows, Marcin Chrust, Florian Pinault, Ethel Villeneuve, Niels Bormann, S. B. HealyList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.15687Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.15687Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.15687Direct OA link when available
- Concepts
-
Climatology, Environmental science, Range (aeronautics), Meteorology, Computer science, Geography, Geology, Aerospace engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405715399 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.15687 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.15687 |
| ids.openalex | https://openalex.org/W4405715399 |
| fwci | |
| type | preprint |
| title | GraphDOP: Towards skilful data-driven medium-range weather forecasts learnt and initialised directly from observations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9265999794006348 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C49204034 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5576752424240112 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[0].display_name | Climatology |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5369823575019836 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C204323151 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5206896066665649 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[2].display_name | Range (aeronautics) |
| concepts[3].id | https://openalex.org/C153294291 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4551319181919098 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[3].display_name | Meteorology |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3463098406791687 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.26212847232818604 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.16294598579406738 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C146978453 |
| concepts[7].level | 1 |
| concepts[7].score | 0.10568368434906006 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[7].display_name | Aerospace engineering |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.07509741187095642 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/climatology |
| keywords[0].score | 0.5576752424240112 |
| keywords[0].display_name | Climatology |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.5369823575019836 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/range |
| keywords[2].score | 0.5206896066665649 |
| keywords[2].display_name | Range (aeronautics) |
| keywords[3].id | https://openalex.org/keywords/meteorology |
| keywords[3].score | 0.4551319181919098 |
| keywords[3].display_name | Meteorology |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3463098406791687 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.26212847232818604 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.16294598579406738 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[7].score | 0.10568368434906006 |
| keywords[7].display_name | Aerospace engineering |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.07509741187095642 |
| keywords[8].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.15687 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.15687 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.15687 |
| locations[1].id | doi:10.48550/arxiv.2412.15687 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.15687 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5048190953 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mihai Alexe |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alexe, Mihai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032448786 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6070-2544 |
| authorships[1].author.display_name | Eulalie Boucher |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Boucher, Eulalie |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5051557648 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3662-5382 |
| authorships[2].author.display_name | Peter Lean |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lean, Peter |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065843156 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1869-3426 |
| authorships[3].author.display_name | Ewan Pinnington |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pinnington, Ewan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5008668264 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2808-0463 |
| authorships[4].author.display_name | Patrick Laloyaux |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Laloyaux, Patrick |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5068060699 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | A. P. McNally |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | McNally, Anthony |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5017120357 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9910-7582 |
| authorships[6].author.display_name | Simon Lang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Lang, Simon |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5067735026 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1132-0961 |
| authorships[7].author.display_name | Matthew Chantry |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chantry, Matthew |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5112048331 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | C. J. Burrows |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Burrows, Chris |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5032437637 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-6673-5400 |
| authorships[9].author.display_name | Marcin Chrust |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Chrust, Marcin |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5032933897 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Florian Pinault |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Pinault, Florian |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5071786536 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Ethel Villeneuve |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Villeneuve, Ethel |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5066723581 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-5302-6093 |
| authorships[12].author.display_name | Niels Bormann |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Bormann, Niels |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5027951850 |
| authorships[13].author.orcid | https://orcid.org/0000-0003-4810-9593 |
| authorships[13].author.display_name | S. B. Healy |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Healy, Sean |
| authorships[13].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.15687 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GraphDOP: Towards skilful data-driven medium-range weather forecasts learnt and initialised directly from observations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9265999794006348 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.15687 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.15687 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.15687 |
| primary_location.id | pmh:oai:arXiv.org:2412.15687 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.15687 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.15687 |
| publication_date | 2024-12-20 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 43, 54 |
| abstract_inverted_index.a | 3, 68 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 45 |
| abstract_inverted_index.at | 10 |
| abstract_inverted_index.by | 63 |
| abstract_inverted_index.is | 20, 81 |
| abstract_inverted_index.no | 30 |
| abstract_inverted_index.of | 58, 72, 83, 87 |
| abstract_inverted_index.or | 34 |
| abstract_inverted_index.to | 66, 92 |
| abstract_inverted_index.up | 91 |
| abstract_inverted_index.and | 22, 51, 55, 77, 80 |
| abstract_inverted_index.are | 61 |
| abstract_inverted_index.for | 14 |
| abstract_inverted_index.new | 4 |
| abstract_inverted_index.the | 11, 38, 96 |
| abstract_inverted_index.days | 94 |
| abstract_inverted_index.five | 93 |
| abstract_inverted_index.form | 67 |
| abstract_inverted_index.from | 25, 48 |
| abstract_inverted_index.into | 95 |
| abstract_inverted_index.such | 44 |
| abstract_inverted_index.that | 19 |
| abstract_inverted_index.with | 29 |
| abstract_inverted_index.(that | 60 |
| abstract_inverted_index.Earth | 26, 73 |
| abstract_inverted_index.polar | 49 |
| abstract_inverted_index.state | 75 |
| abstract_inverted_index.Centre | 13 |
| abstract_inverted_index.System | 27, 74 |
| abstract_inverted_index.inputs | 33 |
| abstract_inverted_index.latent | 70 |
| abstract_inverted_index.learns | 37 |
| abstract_inverted_index.system | 8 |
| abstract_inverted_index.(ECMWF) | 18 |
| abstract_inverted_index.Weather | 16 |
| abstract_inverted_index.between | 40 |
| abstract_inverted_index.capable | 82 |
| abstract_inverted_index.future. | 97 |
| abstract_inverted_index.skilful | 85 |
| abstract_inverted_index.trained | 21 |
| abstract_inverted_index.weather | 89 |
| abstract_inverted_index.European | 12 |
| abstract_inverted_index.GraphDOP | 36 |
| abstract_inverted_index.coherent | 69 |
| abstract_inverted_index.dynamics | 76 |
| abstract_inverted_index.forecast | 7 |
| abstract_inverted_index.interest | 59 |
| abstract_inverted_index.measured | 62 |
| abstract_inverted_index.observed | 41 |
| abstract_inverted_index.orbiters | 50 |
| abstract_inverted_index.physical | 78 |
| abstract_inverted_index.relevant | 88 |
| abstract_inverted_index.Forecasts | 17 |
| abstract_inverted_index.GraphDOP, | 2 |
| abstract_inverted_index.developed | 9 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.producing | 84 |
| abstract_inverted_index.brightness | 46 |
| abstract_inverted_index.end-to-end | 6 |
| abstract_inverted_index.feedbacks. | 35 |
| abstract_inverted_index.parameters | 90 |
| abstract_inverted_index.processes, | 79 |
| abstract_inverted_index.quantities | 42, 57 |
| abstract_inverted_index.satellites | 53 |
| abstract_inverted_index.exclusively | 24 |
| abstract_inverted_index.geophysical | 56 |
| abstract_inverted_index.initialised | 23 |
| abstract_inverted_index.predictions | 86 |
| abstract_inverted_index.(re)analysis | 32 |
| abstract_inverted_index.Medium-Range | 15 |
| abstract_inverted_index.conventional | 64 |
| abstract_inverted_index.correlations | 39 |
| abstract_inverted_index.data-driven, | 5 |
| abstract_inverted_index.temperatures | 47 |
| abstract_inverted_index.geostationary | 52 |
| abstract_inverted_index.observations, | 28 |
| abstract_inverted_index.physics-based | 31 |
| abstract_inverted_index.observations), | 65 |
| abstract_inverted_index.representation | 71 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 14 |
| citation_normalized_percentile |