Group Kernels for Gaussian Process Metamodels with Categorical Inputs Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1137/18m1209386
Gaussian processes (GP) are widely used as a metamodel for emulating time-consuming computer codes. We focus on problems involving categorical inputs, with a potentially large number L of levels (typically several tens), partitioned in G << L groups of various sizes. Parsimonious covariance functions, or kernels, can then be defined by block covariance matrices T with constant covariances between pairs of blocks and within blocks. We study the positive definiteness of such matrices to encourage their practical use. The hierarchical group/level structure, equivalent to a nested Bayesian linear model, provides a parameterization of valid block matrices T. The same model can then be used when the assumption within blocks is relaxed, giving a flexible parametric family of valid covariance matrices with constant covariances between pairs of blocks. The positive definiteness of T is equivalent to the positive definiteness of a smaller matrix of size G, obtained by averaging each block. The model is applied to a problem in nuclear waste analysis, where one of the categorical inputs is atomic number, which has more than 90 levels.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1137/18m1209386
- OA Status
- green
- Cited By
- 7
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2787306014
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2787306014Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1137/18m1209386Digital Object Identifier
- Title
-
Group Kernels for Gaussian Process Metamodels with Categorical InputsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Olivier Roustant, Espéran Padonou, Yves Deville, Aloïs Clément, Guillaume Perrin, J. Giorla, Henry P. WynnList of authors in order
- Landing page
-
https://doi.org/10.1137/18m1209386Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1802.02368Direct OA link when available
- Concepts
-
Categorical variable, Group (periodic table), Gaussian process, Process (computing), Kriging, Computer science, Gaussian, Mathematics, Artificial intelligence, Statistics, Physics, Quantum mechanics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1, 2021: 2, 2020: 1, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2787306014 |
|---|---|
| doi | https://doi.org/10.1137/18m1209386 |
| ids.doi | https://doi.org/10.48550/arxiv.1802.02368 |
| ids.mag | 2787306014 |
| ids.openalex | https://openalex.org/W2787306014 |
| fwci | 5.40898469 |
| type | article |
| title | Group Kernels for Gaussian Process Metamodels with Categorical Inputs |
| awards[0].id | https://openalex.org/G3728093668 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/K032208/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | 2 |
| biblio.volume | 8 |
| biblio.last_page | 806 |
| biblio.first_page | 775 |
| topics[0].id | https://openalex.org/T13497 |
| topics[0].field.id | https://openalex.org/fields/12 |
| topics[0].field.display_name | Arts and Humanities |
| topics[0].score | 0.9879000186920166 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1211 |
| topics[0].subfield.display_name | Philosophy |
| topics[0].display_name | Hermeneutics and Narrative Identity |
| topics[1].id | https://openalex.org/T13695 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9749000072479248 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3600 |
| topics[1].subfield.display_name | General Health Professions |
| topics[1].display_name | Aging, Elder Care, and Social Issues |
| topics[2].id | https://openalex.org/T13099 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.95660001039505 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Health, Medicine and Society |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C5274069 |
| concepts[0].level | 2 |
| concepts[0].score | 0.822219729423523 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2285707 |
| concepts[0].display_name | Categorical variable |
| concepts[1].id | https://openalex.org/C2781311116 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6707940101623535 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q83306 |
| concepts[1].display_name | Group (periodic table) |
| concepts[2].id | https://openalex.org/C61326573 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5843724012374878 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[2].display_name | Gaussian process |
| concepts[3].id | https://openalex.org/C98045186 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5321473479270935 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[3].display_name | Process (computing) |
| concepts[4].id | https://openalex.org/C81692654 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49457094073295593 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q225926 |
| concepts[4].display_name | Kriging |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.41856229305267334 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C163716315 |
| concepts[6].level | 2 |
| concepts[6].score | 0.40484336018562317 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[6].display_name | Gaussian |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.39430275559425354 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.35792839527130127 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.28444188833236694 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08704313635826111 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/categorical-variable |
| keywords[0].score | 0.822219729423523 |
| keywords[0].display_name | Categorical variable |
| keywords[1].id | https://openalex.org/keywords/group |
| keywords[1].score | 0.6707940101623535 |
| keywords[1].display_name | Group (periodic table) |
| keywords[2].id | https://openalex.org/keywords/gaussian-process |
| keywords[2].score | 0.5843724012374878 |
| keywords[2].display_name | Gaussian process |
| keywords[3].id | https://openalex.org/keywords/process |
| keywords[3].score | 0.5321473479270935 |
| keywords[3].display_name | Process (computing) |
| keywords[4].id | https://openalex.org/keywords/kriging |
| keywords[4].score | 0.49457094073295593 |
| keywords[4].display_name | Kriging |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.41856229305267334 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/gaussian |
| keywords[6].score | 0.40484336018562317 |
| keywords[6].display_name | Gaussian |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.39430275559425354 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.35792839527130127 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.28444188833236694 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.08704313635826111 |
| keywords[10].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1137/18m1209386 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S2911293512 |
| locations[0].source.issn | 2166-2525 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2166-2525 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SIAM/ASA Journal on Uncertainty Quantification |
| locations[0].source.host_organization | https://openalex.org/P4310320508 |
| locations[0].source.host_organization_name | Society for Industrial and Applied Mathematics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320508 |
| locations[0].source.host_organization_lineage_names | Society for Industrial and Applied Mathematics |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | SIAM/ASA Journal on Uncertainty Quantification |
| locations[0].landing_page_url | https://doi.org/10.1137/18m1209386 |
| locations[1].id | pmh:oai:arXiv.org:1802.02368 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1802.02368 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1802.02368 |
| locations[2].id | pmh:oai:HAL:hal-01702607v3 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402512 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[2].source.host_organization | https://openalex.org/I1294671590 |
| locations[2].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[2].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Preprints, Working Papers, ... |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | 2019 |
| locations[2].landing_page_url | https://hal.science/hal-01702607 |
| locations[3].id | doi:10.48550/arxiv.1802.02368 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.1802.02368 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5075037996 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Olivier Roustant |
| authorships[0].affiliations[0].raw_affiliation_string | GdR MASCOT-NUM, LIMOS, FAYOL-ENSMSE, UCA |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Olivier Roustant |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | GdR MASCOT-NUM, LIMOS, FAYOL-ENSMSE, UCA |
| authorships[1].author.id | https://openalex.org/A5023932449 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Espéran Padonou |
| authorships[1].countries | FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210134356 |
| authorships[1].affiliations[0].raw_affiliation_string | Département Génie mathématique et industriel |
| authorships[1].institutions[0].id | https://openalex.org/I4210134356 |
| authorships[1].institutions[0].ror | https://ror.org/0455wwj08 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I277688954, https://openalex.org/I277688954, https://openalex.org/I4210107720, https://openalex.org/I4210134356 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | Laboratoire Génie Industriel |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Esperan Padonou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Département Génie mathématique et industriel |
| authorships[2].author.id | https://openalex.org/A5028020435 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6711-9992 |
| authorships[2].author.display_name | Yves Deville |
| authorships[2].affiliations[0].raw_affiliation_string | Alpestat |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yves Deville |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Alpestat |
| authorships[3].author.id | https://openalex.org/A5017411201 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6317-5612 |
| authorships[3].author.display_name | Aloïs Clément |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210101455 |
| authorships[3].affiliations[0].raw_affiliation_string | CEA/DAM |
| authorships[3].institutions[0].id | https://openalex.org/I4210101455 |
| authorships[3].institutions[0].ror | https://ror.org/00kn4eb29 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I2738703131, https://openalex.org/I2738703131, https://openalex.org/I4210101455, https://openalex.org/I4387152230 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | CEA DAM Île-de-France |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aloïs Clément |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CEA/DAM |
| authorships[4].author.id | https://openalex.org/A5032363972 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0592-6094 |
| authorships[4].author.display_name | Guillaume Perrin |
| authorships[4].countries | FR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210101455 |
| authorships[4].affiliations[0].raw_affiliation_string | DAM/DIF |
| authorships[4].institutions[0].id | https://openalex.org/I4210101455 |
| authorships[4].institutions[0].ror | https://ror.org/00kn4eb29 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I2738703131, https://openalex.org/I2738703131, https://openalex.org/I4210101455, https://openalex.org/I4387152230 |
| authorships[4].institutions[0].country_code | FR |
| authorships[4].institutions[0].display_name | CEA DAM Île-de-France |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Guillaume Perrin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | DAM/DIF |
| authorships[5].author.id | https://openalex.org/A5089012516 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | J. Giorla |
| authorships[5].countries | FR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210101455 |
| authorships[5].affiliations[0].raw_affiliation_string | DAM/DIF |
| authorships[5].institutions[0].id | https://openalex.org/I4210101455 |
| authorships[5].institutions[0].ror | https://ror.org/00kn4eb29 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I2738703131, https://openalex.org/I2738703131, https://openalex.org/I4210101455, https://openalex.org/I4387152230 |
| authorships[5].institutions[0].country_code | FR |
| authorships[5].institutions[0].display_name | CEA DAM Île-de-France |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jean Giorla |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | DAM/DIF |
| authorships[6].author.id | https://openalex.org/A5075445911 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6448-1080 |
| authorships[6].author.display_name | Henry P. Wynn |
| authorships[6].affiliations[0].raw_affiliation_string | LSE |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Henry Wynn |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | LSE |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1802.02368 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Group Kernels for Gaussian Process Metamodels with Categorical Inputs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13497 |
| primary_topic.field.id | https://openalex.org/fields/12 |
| primary_topic.field.display_name | Arts and Humanities |
| primary_topic.score | 0.9879000186920166 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1211 |
| primary_topic.subfield.display_name | Philosophy |
| primary_topic.display_name | Hermeneutics and Narrative Identity |
| related_works | https://openalex.org/W2063381173, https://openalex.org/W4295105946, https://openalex.org/W2766039560, https://openalex.org/W1978256751, https://openalex.org/W4289548246, https://openalex.org/W2889884188, https://openalex.org/W2089458270, https://openalex.org/W2952039921, https://openalex.org/W4308343812, https://openalex.org/W3092151999 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:1802.02368 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1802.02368 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1802.02368 |
| primary_location.id | doi:10.1137/18m1209386 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S2911293512 |
| primary_location.source.issn | 2166-2525 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2166-2525 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SIAM/ASA Journal on Uncertainty Quantification |
| primary_location.source.host_organization | https://openalex.org/P4310320508 |
| primary_location.source.host_organization_name | Society for Industrial and Applied Mathematics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320508 |
| primary_location.source.host_organization_lineage_names | Society for Industrial and Applied Mathematics |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | SIAM/ASA Journal on Uncertainty Quantification |
| primary_location.landing_page_url | https://doi.org/10.1137/18m1209386 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1986454681, https://openalex.org/W2784045342, https://openalex.org/W2524575205, https://openalex.org/W128740895, https://openalex.org/W214995755, https://openalex.org/W1972790352, https://openalex.org/W2085915138, https://openalex.org/W2073194613, https://openalex.org/W2058343378, https://openalex.org/W2018044188, https://openalex.org/W2411061461, https://openalex.org/W1973326821, https://openalex.org/W2091183751, https://openalex.org/W5379094, https://openalex.org/W2156614992, https://openalex.org/W2565969885, https://openalex.org/W2160215259, https://openalex.org/W1587026990, https://openalex.org/W2042504105, https://openalex.org/W3088067371, https://openalex.org/W2974082611 |
| referenced_works_count | 21 |
| abstract_inverted_index.G | 34 |
| abstract_inverted_index.L | 26, 36 |
| abstract_inverted_index.T | 54, 131 |
| abstract_inverted_index.a | 7, 22, 84, 90, 112, 139, 155 |
| abstract_inverted_index.90 | 174 |
| abstract_inverted_index.G, | 144 |
| abstract_inverted_index.T. | 96 |
| abstract_inverted_index.We | 14, 65 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.be | 48, 102 |
| abstract_inverted_index.by | 50, 146 |
| abstract_inverted_index.in | 33, 157 |
| abstract_inverted_index.is | 109, 132, 152, 167 |
| abstract_inverted_index.of | 27, 38, 60, 70, 92, 116, 125, 130, 138, 142, 163 |
| abstract_inverted_index.on | 16 |
| abstract_inverted_index.or | 44 |
| abstract_inverted_index.to | 73, 83, 134, 154 |
| abstract_inverted_index.The | 78, 97, 127, 150 |
| abstract_inverted_index.and | 62 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.can | 46, 100 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.has | 171 |
| abstract_inverted_index.one | 162 |
| abstract_inverted_index.the | 67, 105, 135, 164 |
| abstract_inverted_index.(GP) | 2 |
| abstract_inverted_index.each | 148 |
| abstract_inverted_index.more | 172 |
| abstract_inverted_index.same | 98 |
| abstract_inverted_index.size | 143 |
| abstract_inverted_index.such | 71 |
| abstract_inverted_index.than | 173 |
| abstract_inverted_index.then | 47, 101 |
| abstract_inverted_index.use. | 77 |
| abstract_inverted_index.used | 5, 103 |
| abstract_inverted_index.when | 104 |
| abstract_inverted_index.with | 21, 55, 120 |
| abstract_inverted_index.block | 51, 94 |
| abstract_inverted_index.focus | 15 |
| abstract_inverted_index.large | 24 |
| abstract_inverted_index.model | 99, 151 |
| abstract_inverted_index.pairs | 59, 124 |
| abstract_inverted_index.study | 66 |
| abstract_inverted_index.their | 75 |
| abstract_inverted_index.valid | 93, 117 |
| abstract_inverted_index.waste | 159 |
| abstract_inverted_index.where | 161 |
| abstract_inverted_index.which | 170 |
| abstract_inverted_index.atomic | 168 |
| abstract_inverted_index.block. | 149 |
| abstract_inverted_index.blocks | 61, 108 |
| abstract_inverted_index.codes. | 13 |
| abstract_inverted_index.family | 115 |
| abstract_inverted_index.giving | 111 |
| abstract_inverted_index.groups | 37 |
| abstract_inverted_index.inputs | 166 |
| abstract_inverted_index.levels | 28 |
| abstract_inverted_index.linear | 87 |
| abstract_inverted_index.matrix | 141 |
| abstract_inverted_index.model, | 88 |
| abstract_inverted_index.nested | 85 |
| abstract_inverted_index.number | 25 |
| abstract_inverted_index.sizes. | 40 |
| abstract_inverted_index.tens), | 31 |
| abstract_inverted_index.widely | 4 |
| abstract_inverted_index.within | 63, 107 |
| abstract_inverted_index.applied | 153 |
| abstract_inverted_index.between | 58, 123 |
| abstract_inverted_index.blocks. | 64, 126 |
| abstract_inverted_index.defined | 49 |
| abstract_inverted_index.inputs, | 20 |
| abstract_inverted_index.levels. | 175 |
| abstract_inverted_index.nuclear | 158 |
| abstract_inverted_index.number, | 169 |
| abstract_inverted_index.problem | 156 |
| abstract_inverted_index.several | 30 |
| abstract_inverted_index.smaller | 140 |
| abstract_inverted_index.various | 39 |
| abstract_inverted_index.<< | 35 |
| abstract_inverted_index.Bayesian | 86 |
| abstract_inverted_index.Gaussian | 0 |
| abstract_inverted_index.computer | 12 |
| abstract_inverted_index.constant | 56, 121 |
| abstract_inverted_index.flexible | 113 |
| abstract_inverted_index.kernels, | 45 |
| abstract_inverted_index.matrices | 53, 72, 95, 119 |
| abstract_inverted_index.obtained | 145 |
| abstract_inverted_index.positive | 68, 128, 136 |
| abstract_inverted_index.problems | 17 |
| abstract_inverted_index.provides | 89 |
| abstract_inverted_index.relaxed, | 110 |
| abstract_inverted_index.analysis, | 160 |
| abstract_inverted_index.averaging | 147 |
| abstract_inverted_index.emulating | 10 |
| abstract_inverted_index.encourage | 74 |
| abstract_inverted_index.involving | 18 |
| abstract_inverted_index.metamodel | 8 |
| abstract_inverted_index.practical | 76 |
| abstract_inverted_index.processes | 1 |
| abstract_inverted_index.(typically | 29 |
| abstract_inverted_index.assumption | 106 |
| abstract_inverted_index.covariance | 42, 52, 118 |
| abstract_inverted_index.equivalent | 82, 133 |
| abstract_inverted_index.functions, | 43 |
| abstract_inverted_index.parametric | 114 |
| abstract_inverted_index.structure, | 81 |
| abstract_inverted_index.categorical | 19, 165 |
| abstract_inverted_index.covariances | 57, 122 |
| abstract_inverted_index.group/level | 80 |
| abstract_inverted_index.partitioned | 32 |
| abstract_inverted_index.potentially | 23 |
| abstract_inverted_index.Parsimonious | 41 |
| abstract_inverted_index.definiteness | 69, 129, 137 |
| abstract_inverted_index.hierarchical | 79 |
| abstract_inverted_index.time-consuming | 11 |
| abstract_inverted_index.parameterization | 91 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.96871004 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |