Grow and Merge: A Unified Framework for Continuous Categories Discovery Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2210.04174
Although a number of studies are devoted to novel category discovery, most of them assume a static setting where both labeled and unlabeled data are given at once for finding new categories. In this work, we focus on the application scenarios where unlabeled data are continuously fed into the category discovery system. We refer to it as the {\bf Continuous Category Discovery} ({\bf CCD}) problem, which is significantly more challenging than the static setting. A common challenge faced by novel category discovery is that different sets of features are needed for classification and category discovery: class discriminative features are preferred for classification, while rich and diverse features are more suitable for new category mining. This challenge becomes more severe for dynamic setting as the system is asked to deliver good performance for known classes over time, and at the same time continuously discover new classes from unlabeled data. To address this challenge, we develop a framework of {\bf Grow and Merge} ({\bf GM}) that works by alternating between a growing phase and a merging phase: in the growing phase, it increases the diversity of features through a continuous self-supervised learning for effective category mining, and in the merging phase, it merges the grown model with a static one to ensure satisfying performance for known classes. Our extensive studies verify that the proposed GM framework is significantly more effective than the state-of-the-art approaches for continuous category discovery.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2210.04174
- https://arxiv.org/pdf/2210.04174
- OA Status
- green
- Cited By
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4304701338
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4304701338Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2210.04174Digital Object Identifier
- Title
-
Grow and Merge: A Unified Framework for Continuous Categories DiscoveryWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-09Full publication date if available
- Authors
-
Xinwei Zhang, Jianwen Jiang, Yutong Feng, Zhi-Fan Wu, Xibin Zhao, Hai Wan, Mingqian Tang, Rong Jin, Yue GaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2210.04174Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2210.04174Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2210.04174Direct OA link when available
- Concepts
-
Merge (version control), Discriminative model, Computer science, Machine learning, Artificial intelligence, Categorization, Data mining, Information retrievalTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 10, 2023: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4304701338 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2210.04174 |
| ids.doi | https://doi.org/10.48550/arxiv.2210.04174 |
| ids.openalex | https://openalex.org/W4304701338 |
| fwci | |
| type | preprint |
| title | Grow and Merge: A Unified Framework for Continuous Categories Discovery |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11550 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9940999746322632 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Text and Document Classification Technologies |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.988099992275238 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9692000150680542 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C197129107 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9046110510826111 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1921621 |
| concepts[0].display_name | Merge (version control) |
| concepts[1].id | https://openalex.org/C97931131 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6952040791511536 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[1].display_name | Discriminative model |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6594449877738953 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4705531895160675 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.45440855622291565 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C94124525 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4486866891384125 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[5].display_name | Categorization |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4108721613883972 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C23123220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.25042107701301575 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[7].display_name | Information retrieval |
| keywords[0].id | https://openalex.org/keywords/merge |
| keywords[0].score | 0.9046110510826111 |
| keywords[0].display_name | Merge (version control) |
| keywords[1].id | https://openalex.org/keywords/discriminative-model |
| keywords[1].score | 0.6952040791511536 |
| keywords[1].display_name | Discriminative model |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6594449877738953 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.4705531895160675 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.45440855622291565 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/categorization |
| keywords[5].score | 0.4486866891384125 |
| keywords[5].display_name | Categorization |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.4108721613883972 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/information-retrieval |
| keywords[7].score | 0.25042107701301575 |
| keywords[7].display_name | Information retrieval |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2210.04174 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2210.04174 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2210.04174 |
| locations[1].id | doi:10.48550/arxiv.2210.04174 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2210.04174 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100639554 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-5083-4795 |
| authorships[0].author.display_name | Xinwei Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Xinwei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072476367 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1310-9024 |
| authorships[1].author.display_name | Jianwen Jiang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiang, Jianwen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101939110 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5612-8714 |
| authorships[2].author.display_name | Yutong Feng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Feng, Yutong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5016387381 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhi-Fan Wu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wu, Zhi-Fan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100773043 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6168-7016 |
| authorships[4].author.display_name | Xibin Zhao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhao, Xibin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5027600524 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5357-9130 |
| authorships[5].author.display_name | Hai Wan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wan, Hai |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5034814310 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Mingqian Tang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Tang, Mingqian |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5069394608 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-8797-4646 |
| authorships[7].author.display_name | Rong Jin |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Jin, Rong |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100602494 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-4971-590X |
| authorships[8].author.display_name | Yue Gao |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Gao, Yue |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2210.04174 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Grow and Merge: A Unified Framework for Continuous Categories Discovery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11550 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9940999746322632 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Text and Document Classification Technologies |
| related_works | https://openalex.org/W2165912799, https://openalex.org/W2735662278, https://openalex.org/W2382615723, https://openalex.org/W4389116644, https://openalex.org/W2153315159, https://openalex.org/W4311804456, https://openalex.org/W3103844505, https://openalex.org/W1987484445, https://openalex.org/W2623658258, https://openalex.org/W259157601 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2210.04174 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2210.04174 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2210.04174 |
| primary_location.id | pmh:oai:arXiv.org:2210.04174 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2210.04174 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2210.04174 |
| publication_date | 2022-10-09 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 74 |
| abstract_inverted_index.a | 1, 15, 154, 168, 172, 186, 205 |
| abstract_inverted_index.GM | 222 |
| abstract_inverted_index.In | 32 |
| abstract_inverted_index.To | 148 |
| abstract_inverted_index.We | 52 |
| abstract_inverted_index.as | 56, 122 |
| abstract_inverted_index.at | 26, 137 |
| abstract_inverted_index.by | 78, 165 |
| abstract_inverted_index.in | 175, 195 |
| abstract_inverted_index.is | 66, 82, 125, 224 |
| abstract_inverted_index.it | 55, 179, 199 |
| abstract_inverted_index.of | 3, 12, 86, 156, 183 |
| abstract_inverted_index.on | 37 |
| abstract_inverted_index.to | 7, 54, 127, 208 |
| abstract_inverted_index.we | 35, 152 |
| abstract_inverted_index.Our | 215 |
| abstract_inverted_index.and | 21, 92, 104, 136, 159, 171, 194 |
| abstract_inverted_index.are | 5, 24, 44, 88, 98, 107 |
| abstract_inverted_index.fed | 46 |
| abstract_inverted_index.for | 28, 90, 100, 110, 119, 131, 190, 212, 232 |
| abstract_inverted_index.new | 30, 111, 143 |
| abstract_inverted_index.one | 207 |
| abstract_inverted_index.the | 38, 48, 57, 71, 123, 138, 176, 181, 196, 201, 220, 229 |
| abstract_inverted_index.GM}) | 162 |
| abstract_inverted_index.Grow | 158 |
| abstract_inverted_index.This | 114 |
| abstract_inverted_index.both | 19 |
| abstract_inverted_index.data | 23, 43 |
| abstract_inverted_index.from | 145 |
| abstract_inverted_index.good | 129 |
| abstract_inverted_index.into | 47 |
| abstract_inverted_index.more | 68, 108, 117, 226 |
| abstract_inverted_index.most | 11 |
| abstract_inverted_index.once | 27 |
| abstract_inverted_index.over | 134 |
| abstract_inverted_index.rich | 103 |
| abstract_inverted_index.same | 139 |
| abstract_inverted_index.sets | 85 |
| abstract_inverted_index.than | 70, 228 |
| abstract_inverted_index.that | 83, 163, 219 |
| abstract_inverted_index.them | 13 |
| abstract_inverted_index.this | 33, 150 |
| abstract_inverted_index.time | 140 |
| abstract_inverted_index.with | 204 |
| abstract_inverted_index.{\bf | 58, 157 |
| abstract_inverted_index.({\bf | 62, 161 |
| abstract_inverted_index.CCD}) | 63 |
| abstract_inverted_index.asked | 126 |
| abstract_inverted_index.class | 95 |
| abstract_inverted_index.data. | 147 |
| abstract_inverted_index.faced | 77 |
| abstract_inverted_index.focus | 36 |
| abstract_inverted_index.given | 25 |
| abstract_inverted_index.grown | 202 |
| abstract_inverted_index.known | 132, 213 |
| abstract_inverted_index.model | 203 |
| abstract_inverted_index.novel | 8, 79 |
| abstract_inverted_index.phase | 170 |
| abstract_inverted_index.refer | 53 |
| abstract_inverted_index.time, | 135 |
| abstract_inverted_index.where | 18, 41 |
| abstract_inverted_index.which | 65 |
| abstract_inverted_index.while | 102 |
| abstract_inverted_index.work, | 34 |
| abstract_inverted_index.works | 164 |
| abstract_inverted_index.Merge} | 160 |
| abstract_inverted_index.assume | 14 |
| abstract_inverted_index.common | 75 |
| abstract_inverted_index.ensure | 209 |
| abstract_inverted_index.merges | 200 |
| abstract_inverted_index.needed | 89 |
| abstract_inverted_index.number | 2 |
| abstract_inverted_index.phase, | 178, 198 |
| abstract_inverted_index.phase: | 174 |
| abstract_inverted_index.severe | 118 |
| abstract_inverted_index.static | 16, 72, 206 |
| abstract_inverted_index.system | 124 |
| abstract_inverted_index.verify | 218 |
| abstract_inverted_index.address | 149 |
| abstract_inverted_index.becomes | 116 |
| abstract_inverted_index.between | 167 |
| abstract_inverted_index.classes | 133, 144 |
| abstract_inverted_index.deliver | 128 |
| abstract_inverted_index.develop | 153 |
| abstract_inverted_index.devoted | 6 |
| abstract_inverted_index.diverse | 105 |
| abstract_inverted_index.dynamic | 120 |
| abstract_inverted_index.finding | 29 |
| abstract_inverted_index.growing | 169, 177 |
| abstract_inverted_index.labeled | 20 |
| abstract_inverted_index.merging | 173, 197 |
| abstract_inverted_index.mining, | 193 |
| abstract_inverted_index.mining. | 113 |
| abstract_inverted_index.setting | 17, 121 |
| abstract_inverted_index.studies | 4, 217 |
| abstract_inverted_index.system. | 51 |
| abstract_inverted_index.through | 185 |
| abstract_inverted_index.Although | 0 |
| abstract_inverted_index.Category | 60 |
| abstract_inverted_index.category | 9, 49, 80, 93, 112, 192, 234 |
| abstract_inverted_index.classes. | 214 |
| abstract_inverted_index.discover | 142 |
| abstract_inverted_index.features | 87, 97, 106, 184 |
| abstract_inverted_index.learning | 189 |
| abstract_inverted_index.problem, | 64 |
| abstract_inverted_index.proposed | 221 |
| abstract_inverted_index.setting. | 73 |
| abstract_inverted_index.suitable | 109 |
| abstract_inverted_index.challenge | 76, 115 |
| abstract_inverted_index.different | 84 |
| abstract_inverted_index.discovery | 50, 81 |
| abstract_inverted_index.diversity | 182 |
| abstract_inverted_index.effective | 191, 227 |
| abstract_inverted_index.extensive | 216 |
| abstract_inverted_index.framework | 155, 223 |
| abstract_inverted_index.increases | 180 |
| abstract_inverted_index.preferred | 99 |
| abstract_inverted_index.scenarios | 40 |
| abstract_inverted_index.unlabeled | 22, 42, 146 |
| abstract_inverted_index.Continuous | 59 |
| abstract_inverted_index.Discovery} | 61 |
| abstract_inverted_index.approaches | 231 |
| abstract_inverted_index.challenge, | 151 |
| abstract_inverted_index.continuous | 187, 233 |
| abstract_inverted_index.discovery, | 10 |
| abstract_inverted_index.discovery. | 235 |
| abstract_inverted_index.discovery: | 94 |
| abstract_inverted_index.satisfying | 210 |
| abstract_inverted_index.alternating | 166 |
| abstract_inverted_index.application | 39 |
| abstract_inverted_index.categories. | 31 |
| abstract_inverted_index.challenging | 69 |
| abstract_inverted_index.performance | 130, 211 |
| abstract_inverted_index.continuously | 45, 141 |
| abstract_inverted_index.significantly | 67, 225 |
| abstract_inverted_index.classification | 91 |
| abstract_inverted_index.discriminative | 96 |
| abstract_inverted_index.classification, | 101 |
| abstract_inverted_index.self-supervised | 188 |
| abstract_inverted_index.state-of-the-art | 230 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |