Growing Efficient Accurate and Robust Neural Networks on the Edge Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.07691
The ubiquitous deployment of deep learning systems on resource-constrained Edge devices is hindered by their high computational complexity coupled with their fragility to out-of-distribution (OOD) data, especially to naturally occurring common corruptions. Current solutions rely on the Cloud to train and compress models before deploying to the Edge. This incurs high energy and latency costs in transmitting locally acquired field data to the Cloud while also raising privacy concerns. We propose GEARnn (Growing Efficient, Accurate, and Robust neural networks) to grow and train robust networks in-situ, i.e., completely on the Edge device. Starting with a low-complexity initial backbone network, GEARnn employs One-Shot Growth (OSG) to grow a network satisfying the memory constraints of the Edge device using clean data, and robustifies the network using Efficient Robust Augmentation (ERA) to obtain the final network. We demonstrate results on a NVIDIA Jetson Xavier NX, and analyze the trade-offs between accuracy, robustness, model size, energy consumption, and training time. Our results demonstrate the construction of efficient, accurate, and robust networks entirely on an Edge device.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.07691
- https://arxiv.org/pdf/2410.07691
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403364639
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403364639Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.07691Digital Object Identifier
- Title
-
Growing Efficient Accurate and Robust Neural Networks on the EdgeWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-10Full publication date if available
- Authors
-
Vignesh Sundaresha, Naresh R. ShanbhagList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.07691Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.07691Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.07691Direct OA link when available
- Concepts
-
Enhanced Data Rates for GSM Evolution, Artificial neural network, Computer science, Deep neural networks, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403364639 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.07691 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.07691 |
| ids.openalex | https://openalex.org/W4403364639 |
| fwci | |
| type | preprint |
| title | Growing Efficient Accurate and Robust Neural Networks on the Edge |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9377999901771545 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C162307627 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6614760160446167 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[0].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5695120096206665 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5239858031272888 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2984842247 |
| concepts[3].level | 3 |
| concepts[3].score | 0.43637973070144653 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep neural networks |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.42961210012435913 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[0].score | 0.6614760160446167 |
| keywords[0].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.5695120096206665 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5239858031272888 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[3].score | 0.43637973070144653 |
| keywords[3].display_name | Deep neural networks |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.42961210012435913 |
| keywords[4].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.07691 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.07691 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.07691 |
| locations[1].id | doi:10.48550/arxiv.2410.07691 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.07691 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5045308819 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Vignesh Sundaresha |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sundaresha, Vignesh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057014407 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4323-9164 |
| authorships[1].author.display_name | Naresh R. Shanbhag |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Shanbhag, Naresh |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.07691 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Growing Efficient Accurate and Robust Neural Networks on the Edge |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9377999901771545 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W4402327032, https://openalex.org/W2382290278 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.07691 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.07691 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.07691 |
| primary_location.id | pmh:oai:arXiv.org:2410.07691 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.07691 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.07691 |
| publication_date | 2024-10-10 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 94, 106, 137 |
| abstract_inverted_index.We | 69, 133 |
| abstract_inverted_index.an | 169 |
| abstract_inverted_index.by | 13 |
| abstract_inverted_index.in | 55 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.of | 3, 112, 161 |
| abstract_inverted_index.on | 7, 35, 88, 136, 168 |
| abstract_inverted_index.to | 22, 27, 38, 45, 61, 79, 104, 128 |
| abstract_inverted_index.NX, | 141 |
| abstract_inverted_index.Our | 156 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 40, 52, 75, 81, 119, 142, 153, 164 |
| abstract_inverted_index.the | 36, 46, 62, 89, 109, 113, 121, 130, 144, 159 |
| abstract_inverted_index.Edge | 9, 90, 114, 170 |
| abstract_inverted_index.This | 48 |
| abstract_inverted_index.also | 65 |
| abstract_inverted_index.data | 60 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.grow | 80, 105 |
| abstract_inverted_index.high | 15, 50 |
| abstract_inverted_index.rely | 34 |
| abstract_inverted_index.with | 19, 93 |
| abstract_inverted_index.(ERA) | 127 |
| abstract_inverted_index.(OOD) | 24 |
| abstract_inverted_index.(OSG) | 103 |
| abstract_inverted_index.Cloud | 37, 63 |
| abstract_inverted_index.Edge. | 47 |
| abstract_inverted_index.clean | 117 |
| abstract_inverted_index.costs | 54 |
| abstract_inverted_index.data, | 25, 118 |
| abstract_inverted_index.field | 59 |
| abstract_inverted_index.final | 131 |
| abstract_inverted_index.i.e., | 86 |
| abstract_inverted_index.model | 149 |
| abstract_inverted_index.size, | 150 |
| abstract_inverted_index.their | 14, 20 |
| abstract_inverted_index.time. | 155 |
| abstract_inverted_index.train | 39, 82 |
| abstract_inverted_index.using | 116, 123 |
| abstract_inverted_index.while | 64 |
| abstract_inverted_index.GEARnn | 71, 99 |
| abstract_inverted_index.Growth | 102 |
| abstract_inverted_index.Jetson | 139 |
| abstract_inverted_index.NVIDIA | 138 |
| abstract_inverted_index.Robust | 76, 125 |
| abstract_inverted_index.Xavier | 140 |
| abstract_inverted_index.before | 43 |
| abstract_inverted_index.common | 30 |
| abstract_inverted_index.device | 115 |
| abstract_inverted_index.energy | 51, 151 |
| abstract_inverted_index.incurs | 49 |
| abstract_inverted_index.memory | 110 |
| abstract_inverted_index.models | 42 |
| abstract_inverted_index.neural | 77 |
| abstract_inverted_index.obtain | 129 |
| abstract_inverted_index.robust | 83, 165 |
| abstract_inverted_index.Current | 32 |
| abstract_inverted_index.analyze | 143 |
| abstract_inverted_index.between | 146 |
| abstract_inverted_index.coupled | 18 |
| abstract_inverted_index.device. | 91, 171 |
| abstract_inverted_index.devices | 10 |
| abstract_inverted_index.employs | 100 |
| abstract_inverted_index.initial | 96 |
| abstract_inverted_index.latency | 53 |
| abstract_inverted_index.locally | 57 |
| abstract_inverted_index.network | 107, 122 |
| abstract_inverted_index.privacy | 67 |
| abstract_inverted_index.propose | 70 |
| abstract_inverted_index.raising | 66 |
| abstract_inverted_index.results | 135, 157 |
| abstract_inverted_index.systems | 6 |
| abstract_inverted_index.(Growing | 72 |
| abstract_inverted_index.One-Shot | 101 |
| abstract_inverted_index.Starting | 92 |
| abstract_inverted_index.acquired | 58 |
| abstract_inverted_index.backbone | 97 |
| abstract_inverted_index.compress | 41 |
| abstract_inverted_index.entirely | 167 |
| abstract_inverted_index.hindered | 12 |
| abstract_inverted_index.in-situ, | 85 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.network, | 98 |
| abstract_inverted_index.network. | 132 |
| abstract_inverted_index.networks | 84, 166 |
| abstract_inverted_index.training | 154 |
| abstract_inverted_index.Accurate, | 74 |
| abstract_inverted_index.Efficient | 124 |
| abstract_inverted_index.accuracy, | 147 |
| abstract_inverted_index.accurate, | 163 |
| abstract_inverted_index.concerns. | 68 |
| abstract_inverted_index.deploying | 44 |
| abstract_inverted_index.fragility | 21 |
| abstract_inverted_index.naturally | 28 |
| abstract_inverted_index.networks) | 78 |
| abstract_inverted_index.occurring | 29 |
| abstract_inverted_index.solutions | 33 |
| abstract_inverted_index.Efficient, | 73 |
| abstract_inverted_index.completely | 87 |
| abstract_inverted_index.complexity | 17 |
| abstract_inverted_index.deployment | 2 |
| abstract_inverted_index.efficient, | 162 |
| abstract_inverted_index.especially | 26 |
| abstract_inverted_index.satisfying | 108 |
| abstract_inverted_index.trade-offs | 145 |
| abstract_inverted_index.ubiquitous | 1 |
| abstract_inverted_index.constraints | 111 |
| abstract_inverted_index.demonstrate | 134, 158 |
| abstract_inverted_index.robustifies | 120 |
| abstract_inverted_index.robustness, | 148 |
| abstract_inverted_index.Augmentation | 126 |
| abstract_inverted_index.construction | 160 |
| abstract_inverted_index.consumption, | 152 |
| abstract_inverted_index.corruptions. | 31 |
| abstract_inverted_index.transmitting | 56 |
| abstract_inverted_index.computational | 16 |
| abstract_inverted_index.low-complexity | 95 |
| abstract_inverted_index.out-of-distribution | 23 |
| abstract_inverted_index.resource-constrained | 8 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |