GSCINet: Gradual Shrinkage and Cyclic Interaction Network for Salient Object Detection Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/electronics11131964
Feature Pyramid Network (FPN) has been widely applied in the task of salient object detection (SOD), which has achieved great performance. However, most existing FPN-based SOD methods still have some limitations, such as insufficient guidance due to gradual dilution of semantic information, excessive computation leading to slow inference speed, and low efficiency of training models. In this paper, we design a novel Gradual Shrinkage and Cyclic Interaction Network (GSCINet) for efficient and accurate SOD, consisting of a Multi-Scale Contextual Attention Module (MSCAM) and an Adjacent Feature Shrinkage and Interaction Module (AFSIM). Specifically, the MSCAM aims at efficiently capturing multi-scale and multi-receptive-field contextual attention information through a series of well-designed convolutions and attention weight matrices of different scales to enhance the performance of initial input features. Subsequently, in AFSIM, we propose a gradual shrinkage structure and introduce a circular interaction mechanism to optimize the compressed features with less calculation cost, thereby enabling fast and accurate inference of salient objects. Extensive experimental results demonstrate the high efficiency and superiority of GSCINet against 17 state-of-the-art (SOTA) saliency detection methods under multiple evaluation metrics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics11131964
- https://www.mdpi.com/2079-9292/11/13/1964/pdf?version=1656206289
- OA Status
- gold
- Cited By
- 3
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283365273
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283365273Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics11131964Digital Object Identifier
- Title
-
GSCINet: Gradual Shrinkage and Cyclic Interaction Network for Salient Object DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-23Full publication date if available
- Authors
-
Yanguang Sun, Xiuju Gao, Chenxing Xia, Bin Ge, Songsong DuanList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics11131964Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/11/13/1964/pdf?version=1656206289Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/11/13/1964/pdf?version=1656206289Direct OA link when available
- Concepts
-
Computer science, Inference, Feature (linguistics), Pyramid (geometry), Artificial intelligence, Shrinkage, Salient, Computation, Pattern recognition (psychology), Object (grammar), Field (mathematics), Machine learning, Algorithm, Mathematics, Pure mathematics, Philosophy, Geometry, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283365273 |
|---|---|
| doi | https://doi.org/10.3390/electronics11131964 |
| ids.doi | https://doi.org/10.3390/electronics11131964 |
| ids.openalex | https://openalex.org/W4283365273 |
| fwci | 0.3713754 |
| type | article |
| title | GSCINet: Gradual Shrinkage and Cyclic Interaction Network for Salient Object Detection |
| biblio.issue | 13 |
| biblio.volume | 11 |
| biblio.last_page | 1964 |
| biblio.first_page | 1964 |
| topics[0].id | https://openalex.org/T11605 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Visual Attention and Saliency Detection |
| topics[1].id | https://openalex.org/T11094 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9776999950408936 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Face Recognition and Perception |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9739000201225281 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6952297687530518 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6872652173042297 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C2776401178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.630892813205719 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[2].display_name | Feature (linguistics) |
| concepts[3].id | https://openalex.org/C142575187 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5884690880775452 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3358290 |
| concepts[3].display_name | Pyramid (geometry) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5360885262489319 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C180145272 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5284017324447632 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7504144 |
| concepts[5].display_name | Shrinkage |
| concepts[6].id | https://openalex.org/C2780719617 |
| concepts[6].level | 2 |
| concepts[6].score | 0.510296106338501 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1030752 |
| concepts[6].display_name | Salient |
| concepts[7].id | https://openalex.org/C45374587 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49343767762184143 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[7].display_name | Computation |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48907309770584106 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C2781238097 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47991427779197693 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[9].display_name | Object (grammar) |
| concepts[10].id | https://openalex.org/C9652623 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4706123471260071 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[10].display_name | Field (mathematics) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.25615254044532776 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2332586944103241 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1520194411277771 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C202444582 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[14].display_name | Pure mathematics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6952297687530518 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6872652173042297 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.630892813205719 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/pyramid |
| keywords[3].score | 0.5884690880775452 |
| keywords[3].display_name | Pyramid (geometry) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5360885262489319 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/shrinkage |
| keywords[5].score | 0.5284017324447632 |
| keywords[5].display_name | Shrinkage |
| keywords[6].id | https://openalex.org/keywords/salient |
| keywords[6].score | 0.510296106338501 |
| keywords[6].display_name | Salient |
| keywords[7].id | https://openalex.org/keywords/computation |
| keywords[7].score | 0.49343767762184143 |
| keywords[7].display_name | Computation |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.48907309770584106 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/object |
| keywords[9].score | 0.47991427779197693 |
| keywords[9].display_name | Object (grammar) |
| keywords[10].id | https://openalex.org/keywords/field |
| keywords[10].score | 0.4706123471260071 |
| keywords[10].display_name | Field (mathematics) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.25615254044532776 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.2332586944103241 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.1520194411277771 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/electronics11131964 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/11/13/1964/pdf?version=1656206289 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics11131964 |
| locations[1].id | pmh:oai:doaj.org/article:a749d8e685d34e90830a255c902fee1c |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronics, Vol 11, Iss 1964, p 1964 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/a749d8e685d34e90830a255c902fee1c |
| locations[2].id | pmh:oai:mdpi.com:/2079-9292/11/13/1964/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Electronics; Volume 11; Issue 13; Pages: 1964 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/electronics11131964 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5085833222 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9761-6033 |
| authorships[0].author.display_name | Yanguang Sun |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[0].institutions[0].id | https://openalex.org/I184681353 |
| authorships[0].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yanguang Sun |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[1].author.id | https://openalex.org/A5068221881 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xiuju Gao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[1].institutions[0].id | https://openalex.org/I184681353 |
| authorships[1].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiuju Gao |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[2].author.id | https://openalex.org/A5087739571 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0750-1265 |
| authorships[2].author.display_name | Chenxing Xia |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I184681353 |
| authorships[2].affiliations[1].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[2].institutions[0].id | https://openalex.org/I184681353 |
| authorships[2].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chenxing Xia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China, Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China |
| authorships[3].author.id | https://openalex.org/A5033351506 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9050-1105 |
| authorships[3].author.display_name | Bin Ge |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[3].institutions[0].id | https://openalex.org/I184681353 |
| authorships[3].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bin Ge |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[4].author.id | https://openalex.org/A5067515645 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2983-4044 |
| authorships[4].author.display_name | Songsong Duan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I184681353 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| authorships[4].institutions[0].id | https://openalex.org/I184681353 |
| authorships[4].institutions[0].ror | https://ror.org/00q9atg80 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I184681353 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Anhui University of Science and Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Songsong Duan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/11/13/1964/pdf?version=1656206289 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GSCINet: Gradual Shrinkage and Cyclic Interaction Network for Salient Object Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11605 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Visual Attention and Saliency Detection |
| related_works | https://openalex.org/W2391958761, https://openalex.org/W2765453142, https://openalex.org/W2356780078, https://openalex.org/W2356008845, https://openalex.org/W255134961, https://openalex.org/W2348314720, https://openalex.org/W2243547089, https://openalex.org/W2316482937, https://openalex.org/W2253986335, https://openalex.org/W2768912651 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/electronics11131964 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/11/13/1964/pdf?version=1656206289 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics11131964 |
| primary_location.id | doi:10.3390/electronics11131964 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/11/13/1964/pdf?version=1656206289 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics11131964 |
| publication_date | 2022-06-23 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2026014384, https://openalex.org/W2587403786, https://openalex.org/W2970027214, https://openalex.org/W2098702446, https://openalex.org/W2122076510, https://openalex.org/W2065985528, https://openalex.org/W4239147634, https://openalex.org/W3178632918, https://openalex.org/W2982081451, https://openalex.org/W1947031653, https://openalex.org/W1942214758, https://openalex.org/W2963906836, https://openalex.org/W2799074129, https://openalex.org/W2798825526, https://openalex.org/W2948510860, https://openalex.org/W2961348656, https://openalex.org/W3093116455, https://openalex.org/W4206515410, https://openalex.org/W2565639579, https://openalex.org/W2939217524, https://openalex.org/W3009702330, https://openalex.org/W3107944836, https://openalex.org/W3149623420, https://openalex.org/W1719407190, https://openalex.org/W2963032190, https://openalex.org/W3029368604, https://openalex.org/W2346506533, https://openalex.org/W2160613239, https://openalex.org/W2990278031, https://openalex.org/W3018276607, https://openalex.org/W1903029394, https://openalex.org/W2963112696, https://openalex.org/W3030079400, https://openalex.org/W2194775991, https://openalex.org/W2569272946, https://openalex.org/W2132083787, https://openalex.org/W2780861787, https://openalex.org/W2002781701, https://openalex.org/W2086791339, https://openalex.org/W6639359414, https://openalex.org/W2039313011, https://openalex.org/W2740667773, https://openalex.org/W6674505857, https://openalex.org/W2963529609, https://openalex.org/W2884555738, https://openalex.org/W2981510929, https://openalex.org/W3035290198, https://openalex.org/W3098389804 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 60, 76, 105, 130, 136 |
| abstract_inverted_index.17 | 170 |
| abstract_inverted_index.In | 55 |
| abstract_inverted_index.an | 83 |
| abstract_inverted_index.as | 32 |
| abstract_inverted_index.at | 95 |
| abstract_inverted_index.in | 8, 126 |
| abstract_inverted_index.of | 11, 39, 52, 75, 107, 114, 121, 155, 167 |
| abstract_inverted_index.to | 36, 45, 117, 140 |
| abstract_inverted_index.we | 58, 128 |
| abstract_inverted_index.SOD | 25 |
| abstract_inverted_index.and | 49, 64, 71, 82, 87, 99, 110, 134, 152, 165 |
| abstract_inverted_index.due | 35 |
| abstract_inverted_index.for | 69 |
| abstract_inverted_index.has | 4, 17 |
| abstract_inverted_index.low | 50 |
| abstract_inverted_index.the | 9, 92, 119, 142, 162 |
| abstract_inverted_index.SOD, | 73 |
| abstract_inverted_index.aims | 94 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.fast | 151 |
| abstract_inverted_index.have | 28 |
| abstract_inverted_index.high | 163 |
| abstract_inverted_index.less | 146 |
| abstract_inverted_index.most | 22 |
| abstract_inverted_index.slow | 46 |
| abstract_inverted_index.some | 29 |
| abstract_inverted_index.such | 31 |
| abstract_inverted_index.task | 10 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.with | 145 |
| abstract_inverted_index.(FPN) | 3 |
| abstract_inverted_index.MSCAM | 93 |
| abstract_inverted_index.cost, | 148 |
| abstract_inverted_index.great | 19 |
| abstract_inverted_index.input | 123 |
| abstract_inverted_index.novel | 61 |
| abstract_inverted_index.still | 27 |
| abstract_inverted_index.under | 176 |
| abstract_inverted_index.which | 16 |
| abstract_inverted_index.(SOD), | 15 |
| abstract_inverted_index.(SOTA) | 172 |
| abstract_inverted_index.AFSIM, | 127 |
| abstract_inverted_index.Cyclic | 65 |
| abstract_inverted_index.Module | 80, 89 |
| abstract_inverted_index.design | 59 |
| abstract_inverted_index.object | 13 |
| abstract_inverted_index.paper, | 57 |
| abstract_inverted_index.scales | 116 |
| abstract_inverted_index.series | 106 |
| abstract_inverted_index.speed, | 48 |
| abstract_inverted_index.weight | 112 |
| abstract_inverted_index.widely | 6 |
| abstract_inverted_index.(MSCAM) | 81 |
| abstract_inverted_index.Feature | 0, 85 |
| abstract_inverted_index.GSCINet | 168 |
| abstract_inverted_index.Gradual | 62 |
| abstract_inverted_index.Network | 2, 67 |
| abstract_inverted_index.Pyramid | 1 |
| abstract_inverted_index.against | 169 |
| abstract_inverted_index.applied | 7 |
| abstract_inverted_index.enhance | 118 |
| abstract_inverted_index.gradual | 37, 131 |
| abstract_inverted_index.initial | 122 |
| abstract_inverted_index.leading | 44 |
| abstract_inverted_index.methods | 26, 175 |
| abstract_inverted_index.models. | 54 |
| abstract_inverted_index.propose | 129 |
| abstract_inverted_index.results | 160 |
| abstract_inverted_index.salient | 12, 156 |
| abstract_inverted_index.thereby | 149 |
| abstract_inverted_index.through | 104 |
| abstract_inverted_index.(AFSIM). | 90 |
| abstract_inverted_index.Adjacent | 84 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.accurate | 72, 153 |
| abstract_inverted_index.achieved | 18 |
| abstract_inverted_index.circular | 137 |
| abstract_inverted_index.dilution | 38 |
| abstract_inverted_index.enabling | 150 |
| abstract_inverted_index.existing | 23 |
| abstract_inverted_index.features | 144 |
| abstract_inverted_index.guidance | 34 |
| abstract_inverted_index.matrices | 113 |
| abstract_inverted_index.metrics. | 179 |
| abstract_inverted_index.multiple | 177 |
| abstract_inverted_index.objects. | 157 |
| abstract_inverted_index.optimize | 141 |
| abstract_inverted_index.saliency | 173 |
| abstract_inverted_index.semantic | 40 |
| abstract_inverted_index.training | 53 |
| abstract_inverted_index.(GSCINet) | 68 |
| abstract_inverted_index.Attention | 79 |
| abstract_inverted_index.Extensive | 158 |
| abstract_inverted_index.FPN-based | 24 |
| abstract_inverted_index.Shrinkage | 63, 86 |
| abstract_inverted_index.attention | 102, 111 |
| abstract_inverted_index.capturing | 97 |
| abstract_inverted_index.detection | 14, 174 |
| abstract_inverted_index.different | 115 |
| abstract_inverted_index.efficient | 70 |
| abstract_inverted_index.excessive | 42 |
| abstract_inverted_index.features. | 124 |
| abstract_inverted_index.inference | 47, 154 |
| abstract_inverted_index.introduce | 135 |
| abstract_inverted_index.mechanism | 139 |
| abstract_inverted_index.shrinkage | 132 |
| abstract_inverted_index.structure | 133 |
| abstract_inverted_index.Contextual | 78 |
| abstract_inverted_index.compressed | 143 |
| abstract_inverted_index.consisting | 74 |
| abstract_inverted_index.contextual | 101 |
| abstract_inverted_index.efficiency | 51, 164 |
| abstract_inverted_index.evaluation | 178 |
| abstract_inverted_index.Interaction | 66, 88 |
| abstract_inverted_index.Multi-Scale | 77 |
| abstract_inverted_index.calculation | 147 |
| abstract_inverted_index.computation | 43 |
| abstract_inverted_index.demonstrate | 161 |
| abstract_inverted_index.efficiently | 96 |
| abstract_inverted_index.information | 103 |
| abstract_inverted_index.interaction | 138 |
| abstract_inverted_index.multi-scale | 98 |
| abstract_inverted_index.performance | 120 |
| abstract_inverted_index.superiority | 166 |
| abstract_inverted_index.convolutions | 109 |
| abstract_inverted_index.experimental | 159 |
| abstract_inverted_index.information, | 41 |
| abstract_inverted_index.insufficient | 33 |
| abstract_inverted_index.limitations, | 30 |
| abstract_inverted_index.performance. | 20 |
| abstract_inverted_index.Specifically, | 91 |
| abstract_inverted_index.Subsequently, | 125 |
| abstract_inverted_index.well-designed | 108 |
| abstract_inverted_index.state-of-the-art | 171 |
| abstract_inverted_index.multi-receptive-field | 100 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5068221881 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I184681353 |
| citation_normalized_percentile.value | 0.55784921 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |