GSID: Generative Semantic Indexing for E-Commerce Product Understanding Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.23860
Structured representation of product information is a major bottleneck for the efficiency of e-commerce platforms, especially in second-hand ecommerce platforms. Currently, most product information are organized based on manually curated product categories and attributes, which often fail to adequately cover long-tail products and do not align well with buyer preference. To address these problems, we propose \textbf{G}enerative \textbf{S}emantic \textbf{I}n\textbf{D}exings (GSID), a data-driven approach to generate product structured representations. GSID consists of two key components: (1) Pre-training on unstructured product metadata to learn in-domain semantic embeddings, and (2) Generating more effective semantic codes tailored for downstream product-centric applications. Extensive experiments are conducted to validate the effectiveness of GSID, and it has been successfully deployed on the real-world e-commerce platform, achieving promising results on product understanding and other downstream tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.23860
- https://arxiv.org/pdf/2509.23860
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415334801
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415334801Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.23860Digital Object Identifier
- Title
-
GSID: Generative Semantic Indexing for E-Commerce Product UnderstandingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-28Full publication date if available
- Authors
-
Haiyang Yang, Qingguo Xie, Qinghe Zhang, Liyu Chen, Huike Zou, Chuanyu Lian, Shuguang Han, Fei Huang, Jufeng Chen, Bo ZhengList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.23860Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.23860Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.23860Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415334801 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.23860 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.23860 |
| ids.openalex | https://openalex.org/W4415334801 |
| fwci | |
| type | preprint |
| title | GSID: Generative Semantic Indexing for E-Commerce Product Understanding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12016 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9714999794960022 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Web Data Mining and Analysis |
| topics[1].id | https://openalex.org/T10215 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9531999826431274 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Semantic Web and Ontologies |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9445000290870667 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.23860 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.23860 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.23860 |
| locations[1].id | doi:10.48550/arxiv.2509.23860 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.23860 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100606280 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8910-361X |
| authorships[0].author.display_name | Haiyang Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Haiyang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100748744 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5353-2201 |
| authorships[1].author.display_name | Qingguo Xie |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xie, Qinye |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5062347892 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7251-5105 |
| authorships[2].author.display_name | Qinghe Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Qingheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100698216 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0589-6032 |
| authorships[3].author.display_name | Liyu Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Liyu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5113411704 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Huike Zou |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zou, Huike |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5089853484 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2463-756X |
| authorships[5].author.display_name | Chuanyu Lian |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lian, Chengbao |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5010308985 |
| authorships[6].author.orcid | https://orcid.org/0009-0003-9001-8369 |
| authorships[6].author.display_name | Shuguang Han |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Han, Shuguang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5101488344 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3709-5053 |
| authorships[7].author.display_name | Fei Huang |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Huang, Fei |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5042141859 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Jufeng Chen |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Chen, Jufeng |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5101622991 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-6630-7396 |
| authorships[9].author.display_name | Bo Zheng |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Zheng, Bo |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.23860 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | GSID: Generative Semantic Indexing for E-Commerce Product Understanding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12016 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9714999794960022 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Web Data Mining and Analysis |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.23860 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.23860 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.23860 |
| primary_location.id | pmh:oai:arXiv.org:2509.23860 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.23860 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.23860 |
| publication_date | 2025-09-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 60 |
| abstract_inverted_index.To | 50 |
| abstract_inverted_index.do | 43 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.it | 108 |
| abstract_inverted_index.of | 2, 12, 70, 105 |
| abstract_inverted_index.on | 27, 76, 113, 121 |
| abstract_inverted_index.to | 37, 63, 80, 101 |
| abstract_inverted_index.we | 54 |
| abstract_inverted_index.(1) | 74 |
| abstract_inverted_index.(2) | 86 |
| abstract_inverted_index.and | 32, 42, 85, 107, 124 |
| abstract_inverted_index.are | 24, 99 |
| abstract_inverted_index.for | 9, 93 |
| abstract_inverted_index.has | 109 |
| abstract_inverted_index.key | 72 |
| abstract_inverted_index.not | 44 |
| abstract_inverted_index.the | 10, 103, 114 |
| abstract_inverted_index.two | 71 |
| abstract_inverted_index.GSID | 68 |
| abstract_inverted_index.been | 110 |
| abstract_inverted_index.fail | 36 |
| abstract_inverted_index.more | 88 |
| abstract_inverted_index.most | 21 |
| abstract_inverted_index.well | 46 |
| abstract_inverted_index.with | 47 |
| abstract_inverted_index.GSID, | 106 |
| abstract_inverted_index.align | 45 |
| abstract_inverted_index.based | 26 |
| abstract_inverted_index.buyer | 48 |
| abstract_inverted_index.codes | 91 |
| abstract_inverted_index.cover | 39 |
| abstract_inverted_index.learn | 81 |
| abstract_inverted_index.major | 7 |
| abstract_inverted_index.often | 35 |
| abstract_inverted_index.other | 125 |
| abstract_inverted_index.these | 52 |
| abstract_inverted_index.which | 34 |
| abstract_inverted_index.tasks. | 127 |
| abstract_inverted_index.(GSID), | 59 |
| abstract_inverted_index.address | 51 |
| abstract_inverted_index.curated | 29 |
| abstract_inverted_index.product | 3, 22, 30, 65, 78, 122 |
| abstract_inverted_index.propose | 55 |
| abstract_inverted_index.results | 120 |
| abstract_inverted_index.approach | 62 |
| abstract_inverted_index.consists | 69 |
| abstract_inverted_index.deployed | 112 |
| abstract_inverted_index.generate | 64 |
| abstract_inverted_index.manually | 28 |
| abstract_inverted_index.metadata | 79 |
| abstract_inverted_index.products | 41 |
| abstract_inverted_index.semantic | 83, 90 |
| abstract_inverted_index.tailored | 92 |
| abstract_inverted_index.validate | 102 |
| abstract_inverted_index.Extensive | 97 |
| abstract_inverted_index.achieving | 118 |
| abstract_inverted_index.conducted | 100 |
| abstract_inverted_index.ecommerce | 18 |
| abstract_inverted_index.effective | 89 |
| abstract_inverted_index.in-domain | 82 |
| abstract_inverted_index.long-tail | 40 |
| abstract_inverted_index.organized | 25 |
| abstract_inverted_index.platform, | 117 |
| abstract_inverted_index.problems, | 53 |
| abstract_inverted_index.promising | 119 |
| abstract_inverted_index.Currently, | 20 |
| abstract_inverted_index.Generating | 87 |
| abstract_inverted_index.Structured | 0 |
| abstract_inverted_index.adequately | 38 |
| abstract_inverted_index.bottleneck | 8 |
| abstract_inverted_index.categories | 31 |
| abstract_inverted_index.downstream | 94, 126 |
| abstract_inverted_index.e-commerce | 13, 116 |
| abstract_inverted_index.efficiency | 11 |
| abstract_inverted_index.especially | 15 |
| abstract_inverted_index.platforms, | 14 |
| abstract_inverted_index.platforms. | 19 |
| abstract_inverted_index.real-world | 115 |
| abstract_inverted_index.structured | 66 |
| abstract_inverted_index.attributes, | 33 |
| abstract_inverted_index.components: | 73 |
| abstract_inverted_index.data-driven | 61 |
| abstract_inverted_index.embeddings, | 84 |
| abstract_inverted_index.experiments | 98 |
| abstract_inverted_index.information | 4, 23 |
| abstract_inverted_index.preference. | 49 |
| abstract_inverted_index.second-hand | 17 |
| abstract_inverted_index.Pre-training | 75 |
| abstract_inverted_index.successfully | 111 |
| abstract_inverted_index.unstructured | 77 |
| abstract_inverted_index.applications. | 96 |
| abstract_inverted_index.effectiveness | 104 |
| abstract_inverted_index.understanding | 123 |
| abstract_inverted_index.representation | 1 |
| abstract_inverted_index.product-centric | 95 |
| abstract_inverted_index.representations. | 67 |
| abstract_inverted_index.\textbf{S}emantic | 57 |
| abstract_inverted_index.\textbf{G}enerative | 56 |
| abstract_inverted_index.\textbf{I}n\textbf{D}exings | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |