GT4HistOCR: Ground Truth for training OCR engines on historical documents in German Fraktur and Early Modern Latin Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.1344132
GT4HistOCR contains ground truth for research in Optical Character Recognition (OCR) technology applied to historical printings in German Fraktur and Early Modern Latin. The ground truth comes in pairs of images of single printed lines as they appear in book pages (*.png) and their corresponding diplomatic transcriptions (*.gt.txt), which are UTF-8 strings preserving the character forms (glyphs) as much as possible within the UNICODE standard. These pairs of line images and their transcriptions can be directly used to train recognition models with, e.g., the open source OCR engines OCRopy or Tesseract. A total of 313,173 ground truth lines are provided. Please note that the subcorpora making up this collection used different transcription guidelines, so it is a bad idea to train a recognition model on the total collection! Rather train individual models for each subcorpus. Fur further information about the subcorpora, please see the README file and the accompanying publication. If these data are useful for you, please cite the accompanying publication: @article{springmann2018gt4hist, author = {Uwe Springmann and Christian Reul and Stefanie Dipper and Johannes Baiter}, title = {{Ground Truth for training {OCR} engines on historical documents in German Fraktur and Early Modern Latin}}, journal = {J. Lang. Technol. Comput. Linguistics}, volume = {33}, number = {1}, pages = {97--114}, year = {2018}, url = {https://jlcl.org/content/2-allissues/1-heft1-2018/jlcl_2018-1_5.pdf} }
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.1344132
- OA Status
- green
- Cited By
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3012971703
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3012971703Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.1344132Digital Object Identifier
- Title
-
GT4HistOCR: Ground Truth for training OCR engines on historical documents in German Fraktur and Early Modern LatinWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-08-12Full publication date if available
- Authors
-
Uwe Springmann, Christian Reul, Stefanie Dipper, Johannes BaiterList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.1344132Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.1344132Direct OA link when available
- Concepts
-
Unicode, German, Character (mathematics), Optical character recognition, Ground truth, Computer science, Natural language processing, Artificial intelligence, Information retrieval, Linguistics, Speech recognition, Philosophy, Mathematics, Image (mathematics), GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2, 2019: 3, 2018: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3012971703 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.1344132 |
| ids.mag | 3012971703 |
| ids.openalex | https://openalex.org/W3012971703 |
| fwci | 0.0 |
| type | dataset |
| title | GT4HistOCR: Ground Truth for training OCR engines on historical documents in German Fraktur and Early Modern Latin |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10601 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9537000060081482 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Handwritten Text Recognition Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C500551929 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7873556613922119 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8819 |
| concepts[0].display_name | Unicode |
| concepts[1].id | https://openalex.org/C154775046 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7556059956550598 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188 |
| concepts[1].display_name | German |
| concepts[2].id | https://openalex.org/C2780861071 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5952395796775818 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1062934 |
| concepts[2].display_name | Character (mathematics) |
| concepts[3].id | https://openalex.org/C546480517 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5641971826553345 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q167555 |
| concepts[3].display_name | Optical character recognition |
| concepts[4].id | https://openalex.org/C146849305 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5060445666313171 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[4].display_name | Ground truth |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5031401515007019 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C204321447 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4969950020313263 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[6].display_name | Natural language processing |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.49145424365997314 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C23123220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3336452841758728 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[8].display_name | Information retrieval |
| concepts[9].id | https://openalex.org/C41895202 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3316091299057007 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[9].display_name | Linguistics |
| concepts[10].id | https://openalex.org/C28490314 |
| concepts[10].level | 1 |
| concepts[10].score | 0.32392916083335876 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[10].display_name | Speech recognition |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.19475337862968445 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.15212997794151306 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/unicode |
| keywords[0].score | 0.7873556613922119 |
| keywords[0].display_name | Unicode |
| keywords[1].id | https://openalex.org/keywords/german |
| keywords[1].score | 0.7556059956550598 |
| keywords[1].display_name | German |
| keywords[2].id | https://openalex.org/keywords/character |
| keywords[2].score | 0.5952395796775818 |
| keywords[2].display_name | Character (mathematics) |
| keywords[3].id | https://openalex.org/keywords/optical-character-recognition |
| keywords[3].score | 0.5641971826553345 |
| keywords[3].display_name | Optical character recognition |
| keywords[4].id | https://openalex.org/keywords/ground-truth |
| keywords[4].score | 0.5060445666313171 |
| keywords[4].display_name | Ground truth |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5031401515007019 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/natural-language-processing |
| keywords[6].score | 0.4969950020313263 |
| keywords[6].display_name | Natural language processing |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.49145424365997314 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/information-retrieval |
| keywords[8].score | 0.3336452841758728 |
| keywords[8].display_name | Information retrieval |
| keywords[9].id | https://openalex.org/keywords/linguistics |
| keywords[9].score | 0.3316091299057007 |
| keywords[9].display_name | Linguistics |
| keywords[10].id | https://openalex.org/keywords/speech-recognition |
| keywords[10].score | 0.32392916083335876 |
| keywords[10].display_name | Speech recognition |
| keywords[11].id | https://openalex.org/keywords/philosophy |
| keywords[11].score | 0.19475337862968445 |
| keywords[11].display_name | Philosophy |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.15212997794151306 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:zenodo.org:1344132 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/other |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.1344132 |
| authorships[0].author.id | https://openalex.org/A5086884211 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Uwe Springmann |
| authorships[0].affiliations[0].raw_affiliation_string | LMU |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Uwe Springmann |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | LMU |
| authorships[1].author.id | https://openalex.org/A5063938010 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1776-1469 |
| authorships[1].author.display_name | Christian Reul |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25974101 |
| authorships[1].affiliations[0].raw_affiliation_string | Universität Würzburg |
| authorships[1].institutions[0].id | https://openalex.org/I25974101 |
| authorships[1].institutions[0].ror | https://ror.org/00fbnyb24 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25974101 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | University of Würzburg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Christian Reul |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universität Würzburg |
| authorships[2].author.id | https://openalex.org/A5063444213 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4357-9078 |
| authorships[2].author.display_name | Stefanie Dipper |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I904495901 |
| authorships[2].affiliations[0].raw_affiliation_string | Ruhr-Universität Bochum |
| authorships[2].institutions[0].id | https://openalex.org/I904495901 |
| authorships[2].institutions[0].ror | https://ror.org/04tsk2644 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I904495901 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Ruhr University Bochum |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stefanie Dipper |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Ruhr-Universität Bochum |
| authorships[3].author.id | https://openalex.org/A5033897631 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Johannes Baiter |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210138660 |
| authorships[3].affiliations[0].raw_affiliation_string | Bayerische Staatsbibiliothek München |
| authorships[3].institutions[0].id | https://openalex.org/I4210138660 |
| authorships[3].institutions[0].ror | https://ror.org/031h71w90 |
| authorships[3].institutions[0].type | archive |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210138660 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Bavarian State Library |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Johannes Baiter |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Bayerische Staatsbibiliothek München |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.1344132 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GT4HistOCR: Ground Truth for training OCR engines on historical documents in German Fraktur and Early Modern Latin |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10601 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9537000060081482 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Handwritten Text Recognition Techniques |
| related_works | https://openalex.org/W1953677193, https://openalex.org/W3113362864, https://openalex.org/W2404000518, https://openalex.org/W589182691, https://openalex.org/W1993328117, https://openalex.org/W2358376734, https://openalex.org/W2544230285, https://openalex.org/W3217266680, https://openalex.org/W1991513203, https://openalex.org/W3178467699 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2018 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:zenodo.org:1344132 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/other |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.1344132 |
| primary_location.id | pmh:oai:zenodo.org:1344132 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/other |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.1344132 |
| publication_date | 2018-08-12 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 165, 178, 196, 203, 206, 209, 212, 215 |
| abstract_inverted_index.A | 91 |
| abstract_inverted_index.a | 116, 121 |
| abstract_inverted_index.as | 35, 57, 59 |
| abstract_inverted_index.be | 74 |
| abstract_inverted_index.in | 6, 16, 27, 38, 188 |
| abstract_inverted_index.is | 115 |
| abstract_inverted_index.it | 114 |
| abstract_inverted_index.of | 29, 31, 67, 93 |
| abstract_inverted_index.on | 124, 185 |
| abstract_inverted_index.or | 89 |
| abstract_inverted_index.so | 113 |
| abstract_inverted_index.to | 13, 77, 119 |
| abstract_inverted_index.up | 106 |
| abstract_inverted_index.Fur | 135 |
| abstract_inverted_index.OCR | 86 |
| abstract_inverted_index.and | 19, 42, 70, 146, 168, 171, 174, 191 |
| abstract_inverted_index.are | 49, 98, 153 |
| abstract_inverted_index.bad | 117 |
| abstract_inverted_index.can | 73 |
| abstract_inverted_index.for | 4, 132, 155, 181 |
| abstract_inverted_index.see | 142 |
| abstract_inverted_index.the | 53, 62, 83, 103, 125, 139, 143, 147, 159 |
| abstract_inverted_index.url | 214 |
| abstract_inverted_index.{J. | 197 |
| abstract_inverted_index.Reul | 170 |
| abstract_inverted_index.book | 39 |
| abstract_inverted_index.cite | 158 |
| abstract_inverted_index.data | 152 |
| abstract_inverted_index.each | 133 |
| abstract_inverted_index.file | 145 |
| abstract_inverted_index.idea | 118 |
| abstract_inverted_index.line | 68 |
| abstract_inverted_index.much | 58 |
| abstract_inverted_index.note | 101 |
| abstract_inverted_index.open | 84 |
| abstract_inverted_index.that | 102 |
| abstract_inverted_index.they | 36 |
| abstract_inverted_index.this | 107 |
| abstract_inverted_index.used | 76, 109 |
| abstract_inverted_index.year | 211 |
| abstract_inverted_index.you, | 156 |
| abstract_inverted_index.{1}, | 207 |
| abstract_inverted_index.{Uwe | 166 |
| abstract_inverted_index.(OCR) | 10 |
| abstract_inverted_index.Early | 20, 192 |
| abstract_inverted_index.Lang. | 198 |
| abstract_inverted_index.These | 65 |
| abstract_inverted_index.Truth | 180 |
| abstract_inverted_index.UTF-8 | 50 |
| abstract_inverted_index.about | 138 |
| abstract_inverted_index.comes | 26 |
| abstract_inverted_index.e.g., | 82 |
| abstract_inverted_index.forms | 55 |
| abstract_inverted_index.lines | 34, 97 |
| abstract_inverted_index.model | 123 |
| abstract_inverted_index.pages | 40, 208 |
| abstract_inverted_index.pairs | 28, 66 |
| abstract_inverted_index.their | 43, 71 |
| abstract_inverted_index.these | 151 |
| abstract_inverted_index.title | 177 |
| abstract_inverted_index.total | 92, 126 |
| abstract_inverted_index.train | 78, 120, 129 |
| abstract_inverted_index.truth | 3, 25, 96 |
| abstract_inverted_index.which | 48 |
| abstract_inverted_index.with, | 81 |
| abstract_inverted_index.{33}, | 204 |
| abstract_inverted_index.{OCR} | 183 |
| abstract_inverted_index.Dipper | 173 |
| abstract_inverted_index.German | 17, 189 |
| abstract_inverted_index.Modern | 21, 193 |
| abstract_inverted_index.README | 144 |
| abstract_inverted_index.Rather | 128 |
| abstract_inverted_index.appear | 37 |
| abstract_inverted_index.author | 164 |
| abstract_inverted_index.ground | 2, 24, 95 |
| abstract_inverted_index.images | 30, 69 |
| abstract_inverted_index.making | 105 |
| abstract_inverted_index.models | 80, 131 |
| abstract_inverted_index.number | 205 |
| abstract_inverted_index.please | 141, 157 |
| abstract_inverted_index.single | 32 |
| abstract_inverted_index.source | 85 |
| abstract_inverted_index.useful | 154 |
| abstract_inverted_index.volume | 202 |
| abstract_inverted_index.within | 61 |
| abstract_inverted_index.(*.png) | 41 |
| abstract_inverted_index.313,173 | 94 |
| abstract_inverted_index.Comput. | 200 |
| abstract_inverted_index.Fraktur | 18, 190 |
| abstract_inverted_index.Optical | 7 |
| abstract_inverted_index.UNICODE | 63 |
| abstract_inverted_index.applied | 12 |
| abstract_inverted_index.engines | 87, 184 |
| abstract_inverted_index.further | 136 |
| abstract_inverted_index.journal | 195 |
| abstract_inverted_index.printed | 33 |
| abstract_inverted_index.strings | 51 |
| abstract_inverted_index.{2018}, | 213 |
| abstract_inverted_index.(glyphs) | 56 |
| abstract_inverted_index.Baiter}, | 176 |
| abstract_inverted_index.Johannes | 175 |
| abstract_inverted_index.Latin}}, | 194 |
| abstract_inverted_index.Stefanie | 172 |
| abstract_inverted_index.Technol. | 199 |
| abstract_inverted_index.contains | 1 |
| abstract_inverted_index.directly | 75 |
| abstract_inverted_index.possible | 60 |
| abstract_inverted_index.research | 5 |
| abstract_inverted_index.training | 182 |
| abstract_inverted_index.{{Ground | 179 |
| abstract_inverted_index.Character | 8 |
| abstract_inverted_index.Christian | 169 |
| abstract_inverted_index.character | 54 |
| abstract_inverted_index.different | 110 |
| abstract_inverted_index.documents | 187 |
| abstract_inverted_index.printings | 15 |
| abstract_inverted_index.standard. | 64 |
| abstract_inverted_index.Springmann | 167 |
| abstract_inverted_index.collection | 108 |
| abstract_inverted_index.diplomatic | 45 |
| abstract_inverted_index.historical | 14, 186 |
| abstract_inverted_index.individual | 130 |
| abstract_inverted_index.preserving | 52 |
| abstract_inverted_index.subcorpora | 104 |
| abstract_inverted_index.technology | 11 |
| abstract_inverted_index.{97--114}, | 210 |
| abstract_inverted_index.<p>If | 150 |
| abstract_inverted_index.(*.gt.txt), | 47 |
| abstract_inverted_index.Recognition | 9 |
| abstract_inverted_index.collection! | 127 |
| abstract_inverted_index.guidelines, | 112 |
| abstract_inverted_index.information | 137 |
| abstract_inverted_index.recognition | 79, 122 |
| abstract_inverted_index.subcorpora, | 140 |
| abstract_inverted_index.<p>The | 23 |
| abstract_inverted_index.accompanying | 148, 160 |
| abstract_inverted_index.Linguistics}, | 201 |
| abstract_inverted_index.corresponding | 44 |
| abstract_inverted_index.transcription | 111 |
| abstract_inverted_index.}</pre> | 217 |
| abstract_inverted_index.transcriptions | 46, 72 |
| abstract_inverted_index.Latin.</p> | 22 |
| abstract_inverted_index.provided.</p> | 99 |
| abstract_inverted_index.publication.</p> | 149 |
| abstract_inverted_index.publication:</p> | 161 |
| abstract_inverted_index.<pre>@article{<a | 162 |
| abstract_inverted_index.subcorpus.</strong> | 134 |
| abstract_inverted_index.<em>OCRopy</em> | 88 |
| abstract_inverted_index.<p><strong>Please | 100 |
| abstract_inverted_index.<em>Tesseract</em>. | 90 |
| abstract_inverted_index.<p><strong>GT4HistOCR</strong> | 0 |
| abstract_inverted_index.{https://jlcl.org/content/2-allissues/1-heft1-2018/jlcl_2018-1_5.pdf} | 216 |
| abstract_inverted_index.href="http://springmann.net/publications.html#springmann2018gt4hist">springmann2018gt4hist</a>, | 163 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |