GTC: Guided Training of CTC Towards Efficient and Accurate Scene Text Recognition Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2002.01276
Connectionist Temporal Classification (CTC) and attention mechanism are two main approaches used in recent scene text recognition works. Compared with attention-based methods, CTC decoder has a much shorter inference time, yet a lower accuracy. To design an efficient and effective model, we propose the guided training of CTC (GTC), where CTC model learns a better alignment and feature representations from a more powerful attentional guidance. With the benefit of guided training, CTC model achieves robust and accurate prediction for both regular and irregular scene text while maintaining a fast inference speed. Moreover, to further leverage the potential of CTC decoder, a graph convolutional network (GCN) is proposed to learn the local correlations of extracted features. Extensive experiments on standard benchmarks demonstrate that our end-to-end model achieves a new state-of-the-art for regular and irregular scene text recognition and needs 6 times shorter inference time than attentionbased methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2002.01276
- https://arxiv.org/pdf/2002.01276
- OA Status
- green
- Cited By
- 3
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3005397030
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3005397030Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2002.01276Digital Object Identifier
- Title
-
GTC: Guided Training of CTC Towards Efficient and Accurate Scene Text RecognitionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-02-04Full publication date if available
- Authors
-
Wenyang Hu, Xiaocong Cai, Jun Hou, Shuai Yi, Zhiping LinList of authors in order
- Landing page
-
https://arxiv.org/abs/2002.01276Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2002.01276Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2002.01276Direct OA link when available
- Concepts
-
Computer science, Inference, Leverage (statistics), Connectionism, Artificial intelligence, Graph, Pattern recognition (psychology), Convolutional neural network, Speech recognition, Machine learning, Artificial neural network, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 3Per-year citation counts (last 5 years)
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3005397030 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2002.01276 |
| ids.doi | https://doi.org/10.48550/arxiv.2002.01276 |
| ids.mag | 3005397030 |
| ids.openalex | https://openalex.org/W3005397030 |
| fwci | |
| type | preprint |
| title | GTC: Guided Training of CTC Towards Efficient and Accurate Scene Text Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10601 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Handwritten Text Recognition Techniques |
| topics[1].id | https://openalex.org/T10824 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Retrieval and Classification Techniques |
| topics[2].id | https://openalex.org/T14339 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9908000230789185 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Processing and 3D Reconstruction |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7852535843849182 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7693374156951904 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C153083717 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7538577318191528 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[2].display_name | Leverage (statistics) |
| concepts[3].id | https://openalex.org/C8521452 |
| concepts[3].level | 3 |
| concepts[3].score | 0.674133837223053 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q203790 |
| concepts[3].display_name | Connectionism |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.595440149307251 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5182287693023682 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4569760262966156 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C81363708 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42038673162460327 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[7].display_name | Convolutional neural network |
| concepts[8].id | https://openalex.org/C28490314 |
| concepts[8].level | 1 |
| concepts[8].score | 0.40909838676452637 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[8].display_name | Speech recognition |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3501383662223816 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.17306751012802124 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.058155983686447144 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7852535843849182 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.7693374156951904 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/leverage |
| keywords[2].score | 0.7538577318191528 |
| keywords[2].display_name | Leverage (statistics) |
| keywords[3].id | https://openalex.org/keywords/connectionism |
| keywords[3].score | 0.674133837223053 |
| keywords[3].display_name | Connectionism |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.595440149307251 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.5182287693023682 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4569760262966156 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[7].score | 0.42038673162460327 |
| keywords[7].display_name | Convolutional neural network |
| keywords[8].id | https://openalex.org/keywords/speech-recognition |
| keywords[8].score | 0.40909838676452637 |
| keywords[8].display_name | Speech recognition |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3501383662223816 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.17306751012802124 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.058155983686447144 |
| keywords[11].display_name | Theoretical computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2002.01276 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2002.01276 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2002.01276 |
| locations[1].id | doi:10.48550/arxiv.2002.01276 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2002.01276 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5008603353 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-6189-7890 |
| authorships[0].author.display_name | Wenyang Hu |
| authorships[0].countries | SG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I172675005 |
| authorships[0].affiliations[0].raw_affiliation_string | Nanyang Technological Univ |
| authorships[0].institutions[0].id | https://openalex.org/I172675005 |
| authorships[0].institutions[0].ror | https://ror.org/02e7b5302 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I172675005 |
| authorships[0].institutions[0].country_code | SG |
| authorships[0].institutions[0].display_name | Nanyang Technological University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenyang Hu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Nanyang Technological Univ |
| authorships[1].author.id | https://openalex.org/A5026634227 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-3408-2638 |
| authorships[1].author.display_name | Xiaocong Cai |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210128910 |
| authorships[1].affiliations[0].raw_affiliation_string | [SenseTime Group] |
| authorships[1].institutions[0].id | https://openalex.org/I4210128910 |
| authorships[1].institutions[0].ror | https://ror.org/036wd5777 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210128910 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Group Sense (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaocong Cai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | [SenseTime Group] |
| authorships[2].author.id | https://openalex.org/A5100721397 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7116-2945 |
| authorships[2].author.display_name | Jun Hou |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210128910 |
| authorships[2].affiliations[0].raw_affiliation_string | [SenseTime Group] |
| authorships[2].institutions[0].id | https://openalex.org/I4210128910 |
| authorships[2].institutions[0].ror | https://ror.org/036wd5777 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210128910 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Group Sense (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jun Hou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | [SenseTime Group] |
| authorships[3].author.id | https://openalex.org/A5101696728 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1253-6633 |
| authorships[3].author.display_name | Shuai Yi |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210128910 |
| authorships[3].affiliations[0].raw_affiliation_string | [SenseTime Group] |
| authorships[3].institutions[0].id | https://openalex.org/I4210128910 |
| authorships[3].institutions[0].ror | https://ror.org/036wd5777 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210128910 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Group Sense (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shuai Yi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | [SenseTime Group] |
| authorships[4].author.id | https://openalex.org/A5049506273 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1587-1226 |
| authorships[4].author.display_name | Zhiping Lin |
| authorships[4].countries | SG |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I172675005 |
| authorships[4].affiliations[0].raw_affiliation_string | Nanyang Technological Univ |
| authorships[4].institutions[0].id | https://openalex.org/I172675005 |
| authorships[4].institutions[0].ror | https://ror.org/02e7b5302 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I172675005 |
| authorships[4].institutions[0].country_code | SG |
| authorships[4].institutions[0].display_name | Nanyang Technological University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhiping Lin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Nanyang Technological Univ |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2002.01276 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GTC: Guided Training of CTC Towards Efficient and Accurate Scene Text Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10601 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Handwritten Text Recognition Techniques |
| related_works | https://openalex.org/W4205841273, https://openalex.org/W4205525690, https://openalex.org/W1732468982, https://openalex.org/W1761388607, https://openalex.org/W1997922073, https://openalex.org/W350032239, https://openalex.org/W2604685715, https://openalex.org/W2412160900, https://openalex.org/W2073435713, https://openalex.org/W4379251913 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2002.01276 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2002.01276 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2002.01276 |
| primary_location.id | pmh:oai:arXiv.org:2002.01276 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2002.01276 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2002.01276 |
| publication_date | 2020-02-04 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2593572697, https://openalex.org/W2965066169, https://openalex.org/W2788069964, https://openalex.org/W2343052201, https://openalex.org/W2963517393, https://openalex.org/W2963233387, https://openalex.org/W2928555987, https://openalex.org/W2194775991, https://openalex.org/W1998042868, https://openalex.org/W1981283549, https://openalex.org/W2795619303, https://openalex.org/W2526425061, https://openalex.org/W2146835493, https://openalex.org/W2122221966, https://openalex.org/W2008806374, https://openalex.org/W2810983211, https://openalex.org/W2750938222 |
| referenced_works_count | 17 |
| abstract_inverted_index.6 | 138 |
| abstract_inverted_index.a | 25, 31, 53, 60, 87, 100, 126 |
| abstract_inverted_index.To | 34 |
| abstract_inverted_index.an | 36 |
| abstract_inverted_index.in | 12 |
| abstract_inverted_index.is | 105 |
| abstract_inverted_index.of | 46, 68, 97, 112 |
| abstract_inverted_index.on | 117 |
| abstract_inverted_index.to | 92, 107 |
| abstract_inverted_index.we | 41 |
| abstract_inverted_index.CTC | 22, 47, 50, 71, 98 |
| abstract_inverted_index.and | 4, 38, 56, 75, 81, 131, 136 |
| abstract_inverted_index.are | 7 |
| abstract_inverted_index.for | 78, 129 |
| abstract_inverted_index.has | 24 |
| abstract_inverted_index.new | 127 |
| abstract_inverted_index.our | 122 |
| abstract_inverted_index.the | 43, 66, 95, 109 |
| abstract_inverted_index.two | 8 |
| abstract_inverted_index.yet | 30 |
| abstract_inverted_index.With | 65 |
| abstract_inverted_index.both | 79 |
| abstract_inverted_index.fast | 88 |
| abstract_inverted_index.from | 59 |
| abstract_inverted_index.main | 9 |
| abstract_inverted_index.more | 61 |
| abstract_inverted_index.much | 26 |
| abstract_inverted_index.text | 15, 84, 134 |
| abstract_inverted_index.than | 143 |
| abstract_inverted_index.that | 121 |
| abstract_inverted_index.time | 142 |
| abstract_inverted_index.used | 11 |
| abstract_inverted_index.with | 19 |
| abstract_inverted_index.(CTC) | 3 |
| abstract_inverted_index.(GCN) | 104 |
| abstract_inverted_index.graph | 101 |
| abstract_inverted_index.learn | 108 |
| abstract_inverted_index.local | 110 |
| abstract_inverted_index.lower | 32 |
| abstract_inverted_index.model | 51, 72, 124 |
| abstract_inverted_index.needs | 137 |
| abstract_inverted_index.scene | 14, 83, 133 |
| abstract_inverted_index.time, | 29 |
| abstract_inverted_index.times | 139 |
| abstract_inverted_index.where | 49 |
| abstract_inverted_index.while | 85 |
| abstract_inverted_index.(GTC), | 48 |
| abstract_inverted_index.better | 54 |
| abstract_inverted_index.design | 35 |
| abstract_inverted_index.guided | 44, 69 |
| abstract_inverted_index.learns | 52 |
| abstract_inverted_index.model, | 40 |
| abstract_inverted_index.recent | 13 |
| abstract_inverted_index.robust | 74 |
| abstract_inverted_index.speed. | 90 |
| abstract_inverted_index.works. | 17 |
| abstract_inverted_index.benefit | 67 |
| abstract_inverted_index.decoder | 23 |
| abstract_inverted_index.feature | 57 |
| abstract_inverted_index.further | 93 |
| abstract_inverted_index.network | 103 |
| abstract_inverted_index.propose | 42 |
| abstract_inverted_index.regular | 80, 130 |
| abstract_inverted_index.shorter | 27, 140 |
| abstract_inverted_index.Compared | 18 |
| abstract_inverted_index.Temporal | 1 |
| abstract_inverted_index.accurate | 76 |
| abstract_inverted_index.achieves | 73, 125 |
| abstract_inverted_index.decoder, | 99 |
| abstract_inverted_index.leverage | 94 |
| abstract_inverted_index.methods, | 21 |
| abstract_inverted_index.methods. | 145 |
| abstract_inverted_index.powerful | 62 |
| abstract_inverted_index.proposed | 106 |
| abstract_inverted_index.standard | 118 |
| abstract_inverted_index.training | 45 |
| abstract_inverted_index.Extensive | 115 |
| abstract_inverted_index.Moreover, | 91 |
| abstract_inverted_index.accuracy. | 33 |
| abstract_inverted_index.alignment | 55 |
| abstract_inverted_index.attention | 5 |
| abstract_inverted_index.effective | 39 |
| abstract_inverted_index.efficient | 37 |
| abstract_inverted_index.extracted | 113 |
| abstract_inverted_index.features. | 114 |
| abstract_inverted_index.guidance. | 64 |
| abstract_inverted_index.inference | 28, 89, 141 |
| abstract_inverted_index.irregular | 82, 132 |
| abstract_inverted_index.mechanism | 6 |
| abstract_inverted_index.potential | 96 |
| abstract_inverted_index.training, | 70 |
| abstract_inverted_index.approaches | 10 |
| abstract_inverted_index.benchmarks | 119 |
| abstract_inverted_index.end-to-end | 123 |
| abstract_inverted_index.prediction | 77 |
| abstract_inverted_index.attentional | 63 |
| abstract_inverted_index.demonstrate | 120 |
| abstract_inverted_index.experiments | 116 |
| abstract_inverted_index.maintaining | 86 |
| abstract_inverted_index.recognition | 16, 135 |
| abstract_inverted_index.correlations | 111 |
| abstract_inverted_index.Connectionist | 0 |
| abstract_inverted_index.convolutional | 102 |
| abstract_inverted_index.Classification | 2 |
| abstract_inverted_index.attentionbased | 144 |
| abstract_inverted_index.attention-based | 20 |
| abstract_inverted_index.representations | 58 |
| abstract_inverted_index.state-of-the-art | 128 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |