GTNet: Generative Transfer Network for Zero-Shot Object Detection Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v34i07.6996
We propose a Generative Transfer Network (GTNet) for zero-shot object detection (ZSD). GTNet consists of an Object Detection Module and a Knowledge Transfer Module. The Object Detection Module can learn large-scale seen domain knowledge. The Knowledge Transfer Module leverages a feature synthesizer to generate unseen class features, which are applied to train a new classification layer for the Object Detection Module. In order to synthesize features for each unseen class with both the intra-class variance and the IoU variance, we design an IoU-Aware Generative Adversarial Network (IoUGAN) as the feature synthesizer, which can be easily integrated into GTNet. Specifically, IoUGAN consists of three unit models: Class Feature Generating Unit (CFU), Foreground Feature Generating Unit (FFU), and Background Feature Generating Unit (BFU). CFU generates unseen features with the intra-class variance conditioned on the class semantic embeddings. FFU and BFU add the IoU variance to the results of CFU, yielding class-specific foreground and background features, respectively. We evaluate our method on three public datasets and the results demonstrate that our method performs favorably against the state-of-the-art ZSD approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v34i07.6996
- https://ojs.aaai.org/index.php/AAAI/article/download/6996/6850
- OA Status
- diamond
- Cited By
- 48
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2997795356
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2997795356Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v34i07.6996Digital Object Identifier
- Title
-
GTNet: Generative Transfer Network for Zero-Shot Object DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-03Full publication date if available
- Authors
-
Shizhen Zhao, Changxin Gao, Yuanjie Shao, Lerenhan Li, Changqian Yu, Zhong Ji, Nong SangList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v34i07.6996Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/6996/6850Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/6996/6850Direct OA link when available
- Concepts
-
Computer science, Feature (linguistics), Class (philosophy), Artificial intelligence, Object (grammar), Pattern recognition (psychology), Object detection, Variance (accounting), Transfer (computing), Generative grammar, Transfer of learning, Feature extraction, Computer vision, Philosophy, Linguistics, Accounting, Parallel computing, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
48Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 13, 2023: 10, 2022: 10, 2021: 8Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2997795356 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v34i07.6996 |
| ids.doi | https://doi.org/10.1609/aaai.v34i07.6996 |
| ids.mag | 2997795356 |
| ids.openalex | https://openalex.org/W2997795356 |
| fwci | 3.19548022 |
| type | article |
| title | GTNet: Generative Transfer Network for Zero-Shot Object Detection |
| biblio.issue | 07 |
| biblio.volume | 34 |
| biblio.last_page | 12974 |
| biblio.first_page | 12967 |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9900000095367432 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7420952916145325 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776401178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7103403210639954 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[1].display_name | Feature (linguistics) |
| concepts[2].id | https://openalex.org/C2777212361 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6785085797309875 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[2].display_name | Class (philosophy) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6400443315505981 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2781238097 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6081762313842773 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[4].display_name | Object (grammar) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5383755564689636 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C2776151529 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5379515290260315 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[6].display_name | Object detection |
| concepts[7].id | https://openalex.org/C196083921 |
| concepts[7].level | 2 |
| concepts[7].score | 0.533752977848053 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7915758 |
| concepts[7].display_name | Variance (accounting) |
| concepts[8].id | https://openalex.org/C2776175482 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46408364176750183 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1195816 |
| concepts[8].display_name | Transfer (computing) |
| concepts[9].id | https://openalex.org/C39890363 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44518232345581055 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[9].display_name | Generative grammar |
| concepts[10].id | https://openalex.org/C150899416 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44026196002960205 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[10].display_name | Transfer of learning |
| concepts[11].id | https://openalex.org/C52622490 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43051791191101074 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[11].display_name | Feature extraction |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.32618969678878784 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C121955636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4116214 |
| concepts[15].display_name | Accounting |
| concepts[16].id | https://openalex.org/C173608175 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[16].display_name | Parallel computing |
| concepts[17].id | https://openalex.org/C144133560 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[17].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7420952916145325 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/feature |
| keywords[1].score | 0.7103403210639954 |
| keywords[1].display_name | Feature (linguistics) |
| keywords[2].id | https://openalex.org/keywords/class |
| keywords[2].score | 0.6785085797309875 |
| keywords[2].display_name | Class (philosophy) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6400443315505981 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/object |
| keywords[4].score | 0.6081762313842773 |
| keywords[4].display_name | Object (grammar) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5383755564689636 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/object-detection |
| keywords[6].score | 0.5379515290260315 |
| keywords[6].display_name | Object detection |
| keywords[7].id | https://openalex.org/keywords/variance |
| keywords[7].score | 0.533752977848053 |
| keywords[7].display_name | Variance (accounting) |
| keywords[8].id | https://openalex.org/keywords/transfer |
| keywords[8].score | 0.46408364176750183 |
| keywords[8].display_name | Transfer (computing) |
| keywords[9].id | https://openalex.org/keywords/generative-grammar |
| keywords[9].score | 0.44518232345581055 |
| keywords[9].display_name | Generative grammar |
| keywords[10].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[10].score | 0.44026196002960205 |
| keywords[10].display_name | Transfer of learning |
| keywords[11].id | https://openalex.org/keywords/feature-extraction |
| keywords[11].score | 0.43051791191101074 |
| keywords[11].display_name | Feature extraction |
| keywords[12].id | https://openalex.org/keywords/computer-vision |
| keywords[12].score | 0.32618969678878784 |
| keywords[12].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1609/aaai.v34i07.6996 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/6996/6850 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v34i07.6996 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5075325244 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8395-5109 |
| authorships[0].author.display_name | Shizhen Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shizhen Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[1].author.id | https://openalex.org/A5035295689 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2736-3920 |
| authorships[1].author.display_name | Changxin Gao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[1].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I47720641 |
| authorships[1].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Changxin Gao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[2].author.id | https://openalex.org/A5068395489 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1141-0454 |
| authorships[2].author.display_name | Yuanjie Shao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[2].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I47720641 |
| authorships[2].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuanjie Shao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[3].author.id | https://openalex.org/A5019559363 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1645-1896 |
| authorships[3].author.display_name | Lerenhan Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[3].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I47720641 |
| authorships[3].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lerenhan Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[4].author.id | https://openalex.org/A5013651586 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4488-4157 |
| authorships[4].author.display_name | Changqian Yu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[4].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[4].institutions[0].id | https://openalex.org/I47720641 |
| authorships[4].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Changqian Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Huazhong University of Science and Technology |
| authorships[5].author.id | https://openalex.org/A5005367680 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2197-3739 |
| authorships[5].author.display_name | Zhong Ji |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[5].affiliations[0].raw_affiliation_string | Tianjin University |
| authorships[5].institutions[0].id | https://openalex.org/I162868743 |
| authorships[5].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Tianjin University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhong Ji |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Tianjin University |
| authorships[6].author.id | https://openalex.org/A5112116313 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Nong Sang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[6].affiliations[0].raw_affiliation_string | Huazhong University of Science and Technology |
| authorships[6].institutions[0].id | https://openalex.org/I47720641 |
| authorships[6].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Nong Sang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Huazhong University of Science and Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/6996/6850 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GTNet: Generative Transfer Network for Zero-Shot Object Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2380075625, https://openalex.org/W4390549206, https://openalex.org/W3201126466, https://openalex.org/W4390718435, https://openalex.org/W3137171911, https://openalex.org/W4237784285, https://openalex.org/W2374712251, https://openalex.org/W4383031710, https://openalex.org/W2386000789, https://openalex.org/W4379540039 |
| cited_by_count | 48 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 13 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 10 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 8 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v34i07.6996 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/6996/6850 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v34i07.6996 |
| primary_location.id | doi:10.1609/aaai.v34i07.6996 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/6996/6850 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v34i07.6996 |
| publication_date | 2020-04-03 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3100093508, https://openalex.org/W6750462345, https://openalex.org/W2289084343, https://openalex.org/W2407521645, https://openalex.org/W2804761240, https://openalex.org/W1542713999, https://openalex.org/W2468328197, https://openalex.org/W6678470764, https://openalex.org/W2102605133, https://openalex.org/W6631782140, https://openalex.org/W6735463952, https://openalex.org/W2899867883, https://openalex.org/W6737680032, https://openalex.org/W2927084868, https://openalex.org/W6639102338, https://openalex.org/W6785652829, https://openalex.org/W2739748921, https://openalex.org/W2791890924, https://openalex.org/W6756159146, https://openalex.org/W6731892127, https://openalex.org/W1483870316, https://openalex.org/W2613718673, https://openalex.org/W1492420801, https://openalex.org/W2772366472, https://openalex.org/W6703186702, https://openalex.org/W6746524570, https://openalex.org/W2798426954, https://openalex.org/W2405223529, https://openalex.org/W6729840497, https://openalex.org/W2963960318, https://openalex.org/W2611632661, https://openalex.org/W2963037989, https://openalex.org/W2900868354, https://openalex.org/W3106250896, https://openalex.org/W2552383788, https://openalex.org/W2117539524, https://openalex.org/W2123024445, https://openalex.org/W2979571231, https://openalex.org/W639708223, https://openalex.org/W2963545832, https://openalex.org/W2963936013, https://openalex.org/W2334493732, https://openalex.org/W2570343428, https://openalex.org/W2277195237, https://openalex.org/W2950800384, https://openalex.org/W2963626623, https://openalex.org/W4295332732, https://openalex.org/W1861492603, https://openalex.org/W2963854535 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 2, 20, 39, 52 |
| abstract_inverted_index.In | 61 |
| abstract_inverted_index.We | 0, 154 |
| abstract_inverted_index.an | 15, 81 |
| abstract_inverted_index.as | 87 |
| abstract_inverted_index.be | 93 |
| abstract_inverted_index.of | 14, 101, 145 |
| abstract_inverted_index.on | 130, 158 |
| abstract_inverted_index.to | 42, 50, 63, 142 |
| abstract_inverted_index.we | 79 |
| abstract_inverted_index.BFU | 137 |
| abstract_inverted_index.CFU | 121 |
| abstract_inverted_index.FFU | 135 |
| abstract_inverted_index.IoU | 77, 140 |
| abstract_inverted_index.The | 24, 34 |
| abstract_inverted_index.ZSD | 174 |
| abstract_inverted_index.add | 138 |
| abstract_inverted_index.and | 19, 75, 115, 136, 150, 162 |
| abstract_inverted_index.are | 48 |
| abstract_inverted_index.can | 28, 92 |
| abstract_inverted_index.for | 7, 56, 66 |
| abstract_inverted_index.new | 53 |
| abstract_inverted_index.our | 156, 167 |
| abstract_inverted_index.the | 57, 72, 76, 88, 126, 131, 139, 143, 163, 172 |
| abstract_inverted_index.CFU, | 146 |
| abstract_inverted_index.Unit | 108, 113, 119 |
| abstract_inverted_index.both | 71 |
| abstract_inverted_index.each | 67 |
| abstract_inverted_index.into | 96 |
| abstract_inverted_index.seen | 31 |
| abstract_inverted_index.that | 166 |
| abstract_inverted_index.unit | 103 |
| abstract_inverted_index.with | 70, 125 |
| abstract_inverted_index.Class | 105 |
| abstract_inverted_index.GTNet | 12 |
| abstract_inverted_index.class | 45, 69, 132 |
| abstract_inverted_index.layer | 55 |
| abstract_inverted_index.learn | 29 |
| abstract_inverted_index.order | 62 |
| abstract_inverted_index.three | 102, 159 |
| abstract_inverted_index.train | 51 |
| abstract_inverted_index.which | 47, 91 |
| abstract_inverted_index.(BFU). | 120 |
| abstract_inverted_index.(CFU), | 109 |
| abstract_inverted_index.(FFU), | 114 |
| abstract_inverted_index.(ZSD). | 11 |
| abstract_inverted_index.GTNet. | 97 |
| abstract_inverted_index.IoUGAN | 99 |
| abstract_inverted_index.Module | 18, 27, 37 |
| abstract_inverted_index.Object | 16, 25, 58 |
| abstract_inverted_index.design | 80 |
| abstract_inverted_index.domain | 32 |
| abstract_inverted_index.easily | 94 |
| abstract_inverted_index.method | 157, 168 |
| abstract_inverted_index.object | 9 |
| abstract_inverted_index.public | 160 |
| abstract_inverted_index.unseen | 44, 68, 123 |
| abstract_inverted_index.(GTNet) | 6 |
| abstract_inverted_index.Feature | 106, 111, 117 |
| abstract_inverted_index.Module. | 23, 60 |
| abstract_inverted_index.Network | 5, 85 |
| abstract_inverted_index.against | 171 |
| abstract_inverted_index.applied | 49 |
| abstract_inverted_index.feature | 40, 89 |
| abstract_inverted_index.models: | 104 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.results | 144, 164 |
| abstract_inverted_index.(IoUGAN) | 86 |
| abstract_inverted_index.Transfer | 4, 22, 36 |
| abstract_inverted_index.consists | 13, 100 |
| abstract_inverted_index.datasets | 161 |
| abstract_inverted_index.evaluate | 155 |
| abstract_inverted_index.features | 65, 124 |
| abstract_inverted_index.generate | 43 |
| abstract_inverted_index.performs | 169 |
| abstract_inverted_index.semantic | 133 |
| abstract_inverted_index.variance | 74, 128, 141 |
| abstract_inverted_index.yielding | 147 |
| abstract_inverted_index.Detection | 17, 26, 59 |
| abstract_inverted_index.IoU-Aware | 82 |
| abstract_inverted_index.Knowledge | 21, 35 |
| abstract_inverted_index.detection | 10 |
| abstract_inverted_index.favorably | 170 |
| abstract_inverted_index.features, | 46, 152 |
| abstract_inverted_index.generates | 122 |
| abstract_inverted_index.leverages | 38 |
| abstract_inverted_index.variance, | 78 |
| abstract_inverted_index.zero-shot | 8 |
| abstract_inverted_index.Background | 116 |
| abstract_inverted_index.Foreground | 110 |
| abstract_inverted_index.Generating | 107, 112, 118 |
| abstract_inverted_index.Generative | 3, 83 |
| abstract_inverted_index.background | 151 |
| abstract_inverted_index.foreground | 149 |
| abstract_inverted_index.integrated | 95 |
| abstract_inverted_index.knowledge. | 33 |
| abstract_inverted_index.synthesize | 64 |
| abstract_inverted_index.Adversarial | 84 |
| abstract_inverted_index.approaches. | 175 |
| abstract_inverted_index.conditioned | 129 |
| abstract_inverted_index.demonstrate | 165 |
| abstract_inverted_index.embeddings. | 134 |
| abstract_inverted_index.intra-class | 73, 127 |
| abstract_inverted_index.large-scale | 30 |
| abstract_inverted_index.synthesizer | 41 |
| abstract_inverted_index.synthesizer, | 90 |
| abstract_inverted_index.Specifically, | 98 |
| abstract_inverted_index.respectively. | 153 |
| abstract_inverted_index.class-specific | 148 |
| abstract_inverted_index.classification | 54 |
| abstract_inverted_index.state-of-the-art | 173 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.92976475 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |