Guarantees of Riemannian Optimization for Low Rank Matrix Completion Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1603.06610
We study the Riemannian optimization methods on the embedded manifold of low rank matrices for the problem of matrix completion, which is about recovering a low rank matrix from its partial entries. Assume $m$ entries of an $n\times n$ rank $r$ matrix are sampled independently and uniformly with replacement. We first prove that with high probability the Riemannian gradient descent and conjugate gradient descent algorithms initialized by one step hard thresholding are guaranteed to converge linearly to the measured matrix provided \begin{align*} m\geq C_κn^{1.5}r\log^{1.5}(n), \end{align*} where $C_κ$ is a numerical constant depending on the condition number of the underlying matrix. The sampling complexity has been further improved to \begin{align*} m\geq C_κnr^2\log^{2}(n) \end{align*} via the resampled Riemannian gradient descent initialization. The analysis of the new initialization procedure relies on an asymmetric restricted isometry property of the sampling operator and the curvature of the low rank matrix manifold. Numerical simulation shows that the algorithms are able to recover a low rank matrix from nearly the minimum number of measurements.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1603.06610
- https://arxiv.org/pdf/1603.06610
- OA Status
- green
- Cited By
- 26
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2307294673
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2307294673Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1603.06610Digital Object Identifier
- Title
-
Guarantees of Riemannian Optimization for Low Rank Matrix CompletionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-03-21Full publication date if available
- Authors
-
Ke Wei, Jian‐Feng Cai, Tony F. Chan, Shingyu LeungList of authors in order
- Landing page
-
https://arxiv.org/abs/1603.06610Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1603.06610Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1603.06610Direct OA link when available
- Concepts
-
Matrix completion, Mathematics, Combinatorics, Rank (graph theory), Matrix (chemical analysis), Low-rank approximation, Restricted isometry property, Riemannian manifold, Initialization, Gradient descent, Isometry (Riemannian geometry), Algorithm, Pure mathematics, Compressed sensing, Computer science, Gaussian, Machine learning, Materials science, Quantum mechanics, Tensor (intrinsic definition), Composite material, Programming language, Artificial neural network, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
26Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 1, 2021: 1, 2020: 2, 2019: 5Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2307294673 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1603.06610 |
| ids.doi | https://doi.org/10.48550/arxiv.1603.06610 |
| ids.mag | 2307294673 |
| ids.openalex | https://openalex.org/W2307294673 |
| fwci | |
| type | preprint |
| title | Guarantees of Riemannian Optimization for Low Rank Matrix Completion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T11205 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9883999824523926 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2610 |
| topics[1].subfield.display_name | Mathematical Physics |
| topics[1].display_name | Numerical methods in inverse problems |
| topics[2].id | https://openalex.org/T11105 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9811999797821045 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778459887 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8481605648994446 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6787865 |
| concepts[0].display_name | Matrix completion |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7552361488342285 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C114614502 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6442014575004578 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[2].display_name | Combinatorics |
| concepts[3].id | https://openalex.org/C164226766 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6017587780952454 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[3].display_name | Rank (graph theory) |
| concepts[4].id | https://openalex.org/C106487976 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5924679040908813 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[4].display_name | Matrix (chemical analysis) |
| concepts[5].id | https://openalex.org/C90199385 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5498759746551514 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6692777 |
| concepts[5].display_name | Low-rank approximation |
| concepts[6].id | https://openalex.org/C17902559 |
| concepts[6].level | 3 |
| concepts[6].score | 0.536222517490387 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17099734 |
| concepts[6].display_name | Restricted isometry property |
| concepts[7].id | https://openalex.org/C2779593128 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5338735580444336 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q632814 |
| concepts[7].display_name | Riemannian manifold |
| concepts[8].id | https://openalex.org/C114466953 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5126475691795349 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6034165 |
| concepts[8].display_name | Initialization |
| concepts[9].id | https://openalex.org/C153258448 |
| concepts[9].level | 3 |
| concepts[9].score | 0.48334142565727234 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[9].display_name | Gradient descent |
| concepts[10].id | https://openalex.org/C82457910 |
| concepts[10].level | 2 |
| concepts[10].score | 0.471378892660141 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q740207 |
| concepts[10].display_name | Isometry (Riemannian geometry) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2707420587539673 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C202444582 |
| concepts[12].level | 1 |
| concepts[12].score | 0.21684151887893677 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[12].display_name | Pure mathematics |
| concepts[13].id | https://openalex.org/C124851039 |
| concepts[13].level | 2 |
| concepts[13].score | 0.12361675500869751 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2665459 |
| concepts[13].display_name | Compressed sensing |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10207533836364746 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C163716315 |
| concepts[15].level | 2 |
| concepts[15].score | 0.08732584118843079 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[15].display_name | Gaussian |
| concepts[16].id | https://openalex.org/C119857082 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[16].display_name | Machine learning |
| concepts[17].id | https://openalex.org/C192562407 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[17].display_name | Materials science |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C155281189 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3518150 |
| concepts[19].display_name | Tensor (intrinsic definition) |
| concepts[20].id | https://openalex.org/C159985019 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[20].display_name | Composite material |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| concepts[22].id | https://openalex.org/C50644808 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[22].display_name | Artificial neural network |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/matrix-completion |
| keywords[0].score | 0.8481605648994446 |
| keywords[0].display_name | Matrix completion |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.7552361488342285 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/combinatorics |
| keywords[2].score | 0.6442014575004578 |
| keywords[2].display_name | Combinatorics |
| keywords[3].id | https://openalex.org/keywords/rank |
| keywords[3].score | 0.6017587780952454 |
| keywords[3].display_name | Rank (graph theory) |
| keywords[4].id | https://openalex.org/keywords/matrix |
| keywords[4].score | 0.5924679040908813 |
| keywords[4].display_name | Matrix (chemical analysis) |
| keywords[5].id | https://openalex.org/keywords/low-rank-approximation |
| keywords[5].score | 0.5498759746551514 |
| keywords[5].display_name | Low-rank approximation |
| keywords[6].id | https://openalex.org/keywords/restricted-isometry-property |
| keywords[6].score | 0.536222517490387 |
| keywords[6].display_name | Restricted isometry property |
| keywords[7].id | https://openalex.org/keywords/riemannian-manifold |
| keywords[7].score | 0.5338735580444336 |
| keywords[7].display_name | Riemannian manifold |
| keywords[8].id | https://openalex.org/keywords/initialization |
| keywords[8].score | 0.5126475691795349 |
| keywords[8].display_name | Initialization |
| keywords[9].id | https://openalex.org/keywords/gradient-descent |
| keywords[9].score | 0.48334142565727234 |
| keywords[9].display_name | Gradient descent |
| keywords[10].id | https://openalex.org/keywords/isometry |
| keywords[10].score | 0.471378892660141 |
| keywords[10].display_name | Isometry (Riemannian geometry) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.2707420587539673 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/pure-mathematics |
| keywords[12].score | 0.21684151887893677 |
| keywords[12].display_name | Pure mathematics |
| keywords[13].id | https://openalex.org/keywords/compressed-sensing |
| keywords[13].score | 0.12361675500869751 |
| keywords[13].display_name | Compressed sensing |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.10207533836364746 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/gaussian |
| keywords[15].score | 0.08732584118843079 |
| keywords[15].display_name | Gaussian |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1603.06610 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1603.06610 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1603.06610 |
| locations[1].id | pmh:oai:repository.hkust.edu.hk:1783.1-78260 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Preprint |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://lbdiscover.ust.hk/uresolver?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=&rft.volume=&rft.issue=&rft.date=2016&rft.spage=&rft.aulast=Wei&rft.aufirst=Ke&rft.atitle=Guarantees%20of%20Riemannian%20Optimization%20for%20Low%20Rank%20Matrix%20Completion&rft.title=arXiv |
| locations[2].id | doi:10.48550/arxiv.1603.06610 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1603.06610 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101867598 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1222-3044 |
| authorships[0].author.display_name | Ke Wei |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[0].affiliations[0].raw_affiliation_string | Univ. of California Davis |
| authorships[0].institutions[0].id | https://openalex.org/I84218800 |
| authorships[0].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Davis |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ke Wei |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Univ. of California Davis |
| authorships[1].author.id | https://openalex.org/A5057913701 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2571-570X |
| authorships[1].author.display_name | Jian‐Feng Cai |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[1].affiliations[0].raw_affiliation_string | , Hong Kong University of Science and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I200769079 |
| authorships[1].institutions[0].ror | https://ror.org/00q4vv597 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200769079 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Hong Kong University of Science and Technology |
| authorships[1].institutions[1].id | https://openalex.org/I889458895 |
| authorships[1].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[1].institutions[1].country_code | HK |
| authorships[1].institutions[1].display_name | University of Hong Kong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jian-Feng Cai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | , Hong Kong University of Science and Technology |
| authorships[2].author.id | https://openalex.org/A5003735769 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6196-2068 |
| authorships[2].author.display_name | Tony F. Chan |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[2].affiliations[0].raw_affiliation_string | , Hong Kong University of Science and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I200769079 |
| authorships[2].institutions[0].ror | https://ror.org/00q4vv597 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200769079 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | Hong Kong University of Science and Technology |
| authorships[2].institutions[1].id | https://openalex.org/I889458895 |
| authorships[2].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[2].institutions[1].country_code | HK |
| authorships[2].institutions[1].display_name | University of Hong Kong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tony F. Chan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | , Hong Kong University of Science and Technology |
| authorships[3].author.id | https://openalex.org/A5059208158 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4549-2761 |
| authorships[3].author.display_name | Shingyu Leung |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I200769079, https://openalex.org/I889458895 |
| authorships[3].affiliations[0].raw_affiliation_string | , Hong Kong University of Science and Technology |
| authorships[3].institutions[0].id | https://openalex.org/I200769079 |
| authorships[3].institutions[0].ror | https://ror.org/00q4vv597 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I200769079 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Hong Kong University of Science and Technology |
| authorships[3].institutions[1].id | https://openalex.org/I889458895 |
| authorships[3].institutions[1].ror | https://ror.org/02zhqgq86 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I889458895 |
| authorships[3].institutions[1].country_code | HK |
| authorships[3].institutions[1].display_name | University of Hong Kong |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shingyu Leung |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | , Hong Kong University of Science and Technology |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1603.06610 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Guarantees of Riemannian Optimization for Low Rank Matrix Completion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W4237430004, https://openalex.org/W2025666718, https://openalex.org/W2151106956, https://openalex.org/W2951968883, https://openalex.org/W2122469757, https://openalex.org/W2145432339, https://openalex.org/W2129984171, https://openalex.org/W2975405901, https://openalex.org/W2741884985, https://openalex.org/W4372272974 |
| cited_by_count | 26 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 5 |
| counts_by_year[5].year | 2018 |
| counts_by_year[5].cited_by_count | 4 |
| counts_by_year[6].year | 2017 |
| counts_by_year[6].cited_by_count | 7 |
| counts_by_year[7].year | 2016 |
| counts_by_year[7].cited_by_count | 3 |
| counts_by_year[8].year | 2015 |
| counts_by_year[8].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1603.06610 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1603.06610 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1603.06610 |
| primary_location.id | pmh:oai:arXiv.org:1603.06610 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1603.06610 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1603.06610 |
| publication_date | 2016-03-21 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2042182457, https://openalex.org/W2060204507, https://openalex.org/W2963449128, https://openalex.org/W2120872934, https://openalex.org/W2165644552, https://openalex.org/W2200878340, https://openalex.org/W2542482481, https://openalex.org/W2120564806, https://openalex.org/W3113425034, https://openalex.org/W1884359871, https://openalex.org/W2096154138, https://openalex.org/W2951597050, https://openalex.org/W1499670810, https://openalex.org/W1847121931, https://openalex.org/W2129908708, https://openalex.org/W2963979747, https://openalex.org/W2118550318, https://openalex.org/W2963684688, https://openalex.org/W2103972604, https://openalex.org/W2144730813, https://openalex.org/W2145179194, https://openalex.org/W1884015253, https://openalex.org/W2058078260, https://openalex.org/W2140867429, https://openalex.org/W2611328865, https://openalex.org/W1804110266, https://openalex.org/W1484412996, https://openalex.org/W2023101933, https://openalex.org/W3029645440, https://openalex.org/W2000345836, https://openalex.org/W2116837464, https://openalex.org/W2171046470, https://openalex.org/W2962761770, https://openalex.org/W2059283452, https://openalex.org/W2034815954, https://openalex.org/W2952489973, https://openalex.org/W2116680824, https://openalex.org/W2098670069 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 24, 88, 156 |
| abstract_inverted_index.We | 0, 49 |
| abstract_inverted_index.an | 36, 128 |
| abstract_inverted_index.by | 66 |
| abstract_inverted_index.is | 21, 87 |
| abstract_inverted_index.n$ | 38 |
| abstract_inverted_index.of | 10, 17, 35, 96, 121, 133, 140, 165 |
| abstract_inverted_index.on | 6, 92, 127 |
| abstract_inverted_index.to | 73, 76, 107, 154 |
| abstract_inverted_index.$m$ | 33 |
| abstract_inverted_index.$r$ | 40 |
| abstract_inverted_index.The | 100, 119 |
| abstract_inverted_index.and | 45, 60, 137 |
| abstract_inverted_index.are | 42, 71, 152 |
| abstract_inverted_index.for | 14 |
| abstract_inverted_index.has | 103 |
| abstract_inverted_index.its | 29 |
| abstract_inverted_index.low | 11, 25, 142, 157 |
| abstract_inverted_index.new | 123 |
| abstract_inverted_index.one | 67 |
| abstract_inverted_index.the | 2, 7, 15, 56, 77, 93, 97, 113, 122, 134, 138, 141, 150, 162 |
| abstract_inverted_index.via | 112 |
| abstract_inverted_index.able | 153 |
| abstract_inverted_index.been | 104 |
| abstract_inverted_index.from | 28, 160 |
| abstract_inverted_index.hard | 69 |
| abstract_inverted_index.high | 54 |
| abstract_inverted_index.rank | 12, 26, 39, 143, 158 |
| abstract_inverted_index.step | 68 |
| abstract_inverted_index.that | 52, 149 |
| abstract_inverted_index.with | 47, 53 |
| abstract_inverted_index.about | 22 |
| abstract_inverted_index.first | 50 |
| abstract_inverted_index.m\geq | 82, 109 |
| abstract_inverted_index.prove | 51 |
| abstract_inverted_index.shows | 148 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.where | 85 |
| abstract_inverted_index.which | 20 |
| abstract_inverted_index.$C_κ$ | 86 |
| abstract_inverted_index.Assume | 32 |
| abstract_inverted_index.matrix | 18, 27, 41, 79, 144, 159 |
| abstract_inverted_index.nearly | 161 |
| abstract_inverted_index.number | 95, 164 |
| abstract_inverted_index.relies | 126 |
| abstract_inverted_index.descent | 59, 63, 117 |
| abstract_inverted_index.entries | 34 |
| abstract_inverted_index.further | 105 |
| abstract_inverted_index.matrix. | 99 |
| abstract_inverted_index.methods | 5 |
| abstract_inverted_index.minimum | 163 |
| abstract_inverted_index.partial | 30 |
| abstract_inverted_index.problem | 16 |
| abstract_inverted_index.recover | 155 |
| abstract_inverted_index.sampled | 43 |
| abstract_inverted_index.$n\times | 37 |
| abstract_inverted_index.analysis | 120 |
| abstract_inverted_index.constant | 90 |
| abstract_inverted_index.converge | 74 |
| abstract_inverted_index.embedded | 8 |
| abstract_inverted_index.entries. | 31 |
| abstract_inverted_index.gradient | 58, 62, 116 |
| abstract_inverted_index.improved | 106 |
| abstract_inverted_index.isometry | 131 |
| abstract_inverted_index.linearly | 75 |
| abstract_inverted_index.manifold | 9 |
| abstract_inverted_index.matrices | 13 |
| abstract_inverted_index.measured | 78 |
| abstract_inverted_index.operator | 136 |
| abstract_inverted_index.property | 132 |
| abstract_inverted_index.provided | 80 |
| abstract_inverted_index.sampling | 101, 135 |
| abstract_inverted_index.Numerical | 146 |
| abstract_inverted_index.condition | 94 |
| abstract_inverted_index.conjugate | 61 |
| abstract_inverted_index.curvature | 139 |
| abstract_inverted_index.depending | 91 |
| abstract_inverted_index.manifold. | 145 |
| abstract_inverted_index.numerical | 89 |
| abstract_inverted_index.procedure | 125 |
| abstract_inverted_index.resampled | 114 |
| abstract_inverted_index.uniformly | 46 |
| abstract_inverted_index.Riemannian | 3, 57, 115 |
| abstract_inverted_index.algorithms | 64, 151 |
| abstract_inverted_index.asymmetric | 129 |
| abstract_inverted_index.complexity | 102 |
| abstract_inverted_index.guaranteed | 72 |
| abstract_inverted_index.recovering | 23 |
| abstract_inverted_index.restricted | 130 |
| abstract_inverted_index.simulation | 147 |
| abstract_inverted_index.underlying | 98 |
| abstract_inverted_index.completion, | 19 |
| abstract_inverted_index.initialized | 65 |
| abstract_inverted_index.probability | 55 |
| abstract_inverted_index.\end{align*} | 84, 111 |
| abstract_inverted_index.optimization | 4 |
| abstract_inverted_index.replacement. | 48 |
| abstract_inverted_index.thresholding | 70 |
| abstract_inverted_index.independently | 44 |
| abstract_inverted_index.measurements. | 166 |
| abstract_inverted_index.\begin{align*} | 81, 108 |
| abstract_inverted_index.initialization | 124 |
| abstract_inverted_index.initialization. | 118 |
| abstract_inverted_index.C_κnr^2\log^{2}(n) | 110 |
| abstract_inverted_index.C_κn^{1.5}r\log^{1.5}(n), | 83 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |