GuardReasoner: Towards Reasoning-based LLM Safeguards Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.18492
As LLMs increasingly impact safety-critical applications, ensuring their safety using guardrails remains a key challenge. This paper proposes GuardReasoner, a new safeguard for LLMs, by guiding the guard model to learn to reason. Concretely, we first create the GuardReasonerTrain dataset, which consists of 127K samples with 460K detailed reasoning steps. Then, we introduce reasoning SFT to unlock the reasoning capability of guard models. In addition, we present hard sample DPO to further strengthen their reasoning ability. In this manner, GuardReasoner achieves better performance, explainability, and generalizability. Extensive experiments and analyses on 13 benchmarks of 3 guardrail tasks demonstrate its superiority. Remarkably, GuardReasoner 8B surpasses GPT-4o+CoT by 5.74% and LLaMA Guard 3 8B by 20.84% F1 score on average. We release the training data, code, and models with different scales (1B, 3B, 8B) of GuardReasoner : https://github.com/yueliu1999/GuardReasoner/.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.18492
- https://arxiv.org/pdf/2501.18492
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407012568
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407012568Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.18492Digital Object Identifier
- Title
-
GuardReasoner: Towards Reasoning-based LLM SafeguardsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-30Full publication date if available
- Authors
-
Yue Liu, Hongcheng Gao, Suodi Zhai, Jun Xia, Tianyi Wu, Zhiwei Xue, Yulin Chen, Kenichi Kawaguchi, J. J. Zhang, Bryan HooiList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.18492Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.18492Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.18492Direct OA link when available
- Concepts
-
Computer science, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407012568 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.18492 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.18492 |
| ids.openalex | https://openalex.org/W4407012568 |
| fwci | |
| type | preprint |
| title | GuardReasoner: Towards Reasoning-based LLM Safeguards |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12034 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9628000259399414 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Digital and Cyber Forensics |
| topics[1].id | https://openalex.org/T13999 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9495999813079834 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Digital Rights Management and Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.3715004324913025 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C17744445 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3343525528907776 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[1].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.3715004324913025 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/political-science |
| keywords[1].score | 0.3343525528907776 |
| keywords[1].display_name | Political science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.18492 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.18492 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.18492 |
| locations[1].id | doi:10.48550/arxiv.2501.18492 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.18492 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5052785781 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5188-5943 |
| authorships[0].author.display_name | Yue Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Yue |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110370692 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Hongcheng Gao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gao, Hongcheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5001856496 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2220-359X |
| authorships[2].author.display_name | Suodi Zhai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhai, Shengfang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5075655523 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9864-7835 |
| authorships[3].author.display_name | Jun Xia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xia, Jun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101956446 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8719-6821 |
| authorships[4].author.display_name | Tianyi Wu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wu, Tianyi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5015109542 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9761-0838 |
| authorships[5].author.display_name | Zhiwei Xue |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xue, Zhiwei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100398899 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7902-1167 |
| authorships[6].author.display_name | Yulin Chen |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chen, Yulin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5054821925 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9301-6321 |
| authorships[7].author.display_name | Kenichi Kawaguchi |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Kawaguchi, Kenji |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5031399206 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | J. J. Zhang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zhang, Jiaheng |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5065675832 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-5645-1754 |
| authorships[9].author.display_name | Bryan Hooi |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Hooi, Bryan |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.18492 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | GuardReasoner: Towards Reasoning-based LLM Safeguards |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12034 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9628000259399414 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Digital and Cyber Forensics |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.18492 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.18492 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.18492 |
| primary_location.id | pmh:oai:arXiv.org:2501.18492 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.18492 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.18492 |
| publication_date | 2025-01-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.3 | 94, 110 |
| abstract_inverted_index.: | 134 |
| abstract_inverted_index.a | 12, 19 |
| abstract_inverted_index.13 | 91 |
| abstract_inverted_index.8B | 102, 111 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.F1 | 114 |
| abstract_inverted_index.In | 63, 76 |
| abstract_inverted_index.We | 118 |
| abstract_inverted_index.by | 24, 105, 112 |
| abstract_inverted_index.of | 42, 60, 93, 132 |
| abstract_inverted_index.on | 90, 116 |
| abstract_inverted_index.to | 29, 31, 55, 70 |
| abstract_inverted_index.we | 34, 51, 65 |
| abstract_inverted_index.3B, | 130 |
| abstract_inverted_index.8B) | 131 |
| abstract_inverted_index.DPO | 69 |
| abstract_inverted_index.SFT | 54 |
| abstract_inverted_index.and | 84, 88, 107, 124 |
| abstract_inverted_index.for | 22 |
| abstract_inverted_index.its | 98 |
| abstract_inverted_index.key | 13 |
| abstract_inverted_index.new | 20 |
| abstract_inverted_index.the | 26, 37, 57, 120 |
| abstract_inverted_index.(1B, | 129 |
| abstract_inverted_index.127K | 43 |
| abstract_inverted_index.460K | 46 |
| abstract_inverted_index.LLMs | 1 |
| abstract_inverted_index.This | 15 |
| abstract_inverted_index.hard | 67 |
| abstract_inverted_index.this | 77 |
| abstract_inverted_index.with | 45, 126 |
| abstract_inverted_index.5.74% | 106 |
| abstract_inverted_index.Guard | 109 |
| abstract_inverted_index.LLMs, | 23 |
| abstract_inverted_index.LLaMA | 108 |
| abstract_inverted_index.Then, | 50 |
| abstract_inverted_index.code, | 123 |
| abstract_inverted_index.data, | 122 |
| abstract_inverted_index.first | 35 |
| abstract_inverted_index.guard | 27, 61 |
| abstract_inverted_index.learn | 30 |
| abstract_inverted_index.model | 28 |
| abstract_inverted_index.paper | 16 |
| abstract_inverted_index.score | 115 |
| abstract_inverted_index.tasks | 96 |
| abstract_inverted_index.their | 7, 73 |
| abstract_inverted_index.using | 9 |
| abstract_inverted_index.which | 40 |
| abstract_inverted_index.20.84% | 113 |
| abstract_inverted_index.better | 81 |
| abstract_inverted_index.create | 36 |
| abstract_inverted_index.impact | 3 |
| abstract_inverted_index.models | 125 |
| abstract_inverted_index.safety | 8 |
| abstract_inverted_index.sample | 68 |
| abstract_inverted_index.scales | 128 |
| abstract_inverted_index.steps. | 49 |
| abstract_inverted_index.unlock | 56 |
| abstract_inverted_index.further | 71 |
| abstract_inverted_index.guiding | 25 |
| abstract_inverted_index.manner, | 78 |
| abstract_inverted_index.models. | 62 |
| abstract_inverted_index.present | 66 |
| abstract_inverted_index.reason. | 32 |
| abstract_inverted_index.release | 119 |
| abstract_inverted_index.remains | 11 |
| abstract_inverted_index.samples | 44 |
| abstract_inverted_index.ability. | 75 |
| abstract_inverted_index.achieves | 80 |
| abstract_inverted_index.analyses | 89 |
| abstract_inverted_index.average. | 117 |
| abstract_inverted_index.consists | 41 |
| abstract_inverted_index.dataset, | 39 |
| abstract_inverted_index.detailed | 47 |
| abstract_inverted_index.ensuring | 6 |
| abstract_inverted_index.proposes | 17 |
| abstract_inverted_index.training | 121 |
| abstract_inverted_index.Extensive | 86 |
| abstract_inverted_index.addition, | 64 |
| abstract_inverted_index.different | 127 |
| abstract_inverted_index.guardrail | 95 |
| abstract_inverted_index.introduce | 52 |
| abstract_inverted_index.reasoning | 48, 53, 58, 74 |
| abstract_inverted_index.safeguard | 21 |
| abstract_inverted_index.surpasses | 103 |
| abstract_inverted_index.GPT-4o+CoT | 104 |
| abstract_inverted_index.benchmarks | 92 |
| abstract_inverted_index.capability | 59 |
| abstract_inverted_index.challenge. | 14 |
| abstract_inverted_index.guardrails | 10 |
| abstract_inverted_index.strengthen | 72 |
| abstract_inverted_index.Concretely, | 33 |
| abstract_inverted_index.Remarkably, | 100 |
| abstract_inverted_index.demonstrate | 97 |
| abstract_inverted_index.experiments | 87 |
| abstract_inverted_index.increasingly | 2 |
| abstract_inverted_index.performance, | 82 |
| abstract_inverted_index.superiority. | 99 |
| abstract_inverted_index.GuardReasoner | 79, 101, 133 |
| abstract_inverted_index.applications, | 5 |
| abstract_inverted_index.GuardReasoner, | 18 |
| abstract_inverted_index.explainability, | 83 |
| abstract_inverted_index.safety-critical | 4 |
| abstract_inverted_index.generalizability. | 85 |
| abstract_inverted_index.GuardReasonerTrain | 38 |
| abstract_inverted_index.https://github.com/yueliu1999/GuardReasoner/. | 135 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile |