Exploring foci of:
Proceedings of the American Mathematical Society • Vol 149 • No 6
Hardy’s inequalities in finite dimensional Hilbert spaces
January 2021 • Dimitar K. Dimitrov, Ivan Gadjev, Geno Nikolov, Rumen Uluchev
We study the behaviour of the smallest possible constants $d_n$ and $c_n$ in Hardy's inequalities $$ \sum_{k=1}^{n}\Big(\frac{1}{k}\sum_{j=1}^{k}a_j\Big)^2\leq d_n\,\sum_{k=1}^{n}a_k^2, \qquad (a_1,\ldots,a_n) \in \mathbb{R}^n $$ and $$ \int_{0}^{\infty}\Bigg(\frac{1}{x}\int\limits_{0}^{x}f(t)\,dt\Bigg)^2 dx \leq c_n \int_{0}^{\infty} f^2(x)\,dx, \ \ f\in \mathcal{H}_n, $$ for the finite dimensional spaces $\mathbb{R}^n$ and $\mathcal{H}_n:=\{f\,:\, \int_0^x f(t) dt =e^{-x/2}\,p(x)\ :\ p\in \mathcal{P}_n, p(0)=0\}…
Combinatorics
Algebraic Number
Mathematics
Physics
Mathematical Analysis
Quantum Mechanics
Acoustics